Status Report

NASA Hubble Space Telescope Daily Report #3938

By SpaceRef Editor
September 6, 2005
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT        # 3938

PERIOD COVERED: UT September 2-5, 2005 (DOY 245-248)

OBSERVATIONS SCHEDULED

ACS/SBC 9806

Properties of the Intergalactic Medium near the Epoch of He-II Reionization

Our STIS spectral snapshot programs have found a rare case of a He-II Lyman-alpha absorption trough in a z=3.51, V=17.6 quasar. This is the highest redshift at which this feature has been observed. We propose to obtain a high-quality STIS spectrum that will enable us to {1} Investigate the evolution and properties of the intergalactic medium {IGM} over an epoch between z=2.8 and 3.5; {2} Search for signs of the reionization of the intergalactic helium; {3} Measure the intensity of the UV background radiation, and find clues toward its origin; and {4} Estimate the IGM baryonic density. The instrument has been changed from STIS to ASC prism.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non-standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.

ACS/WFC 10629

Are Field OB Stars Alone?

This SNAP program offers an inexpensive, simple program to search for low-mass companions of field OB stars. Do field OB stars exist in true isolation, as suggested by a recent Galactic study, or are they the tip of the iceberg on a small cluster of low-mass stars as predicted by the cluster mass function and stellar IMF? Short ACS/WFC V and I observations proposed here may easily resolve this issue for field OB stars in the Small Magellanic Cloud. Truly isolated OB stars represent a theoretical challenge and variation from clusters, in mode of star formation, and have important consequences for our understanding of the field stellar population in galaxies. Small clusters around the field OB stars, on the other hand, may confirm the universality of the stellar clustering law and IMF.

ACS/WFC 10626

A Snapshot Survey of Brightest Cluster Galaxies and Strong Lensing to z = 0.9

We propose an ACS/WFC snapshot survey of the cores of 150 rich galaxy clusters at 0.3 < z < 0.9 from the Red Sequence Cluster Survey {RCS}. An examination of the galaxian light in the brightest cluster galaxies, coupled with a statistical analysis of the strong-lensing properties of the sample, will allow us to contrain the evolution of both the baryonic and dark mass in cluster cores, over an unprecedented redshift range and sample size. In detail, we will use the high- resolution ACS images to measure the metric {10 kpc/h} luminosity and morphological disturbances around the brightest clusters galaxies, in order to calibrate their accretion history in comparison to recent detailed simulations of structure formation in cluster cores. These images will also yield a well-defined sample of arcs formed by strong lensing by these clusters; the frequency and detailed distribution {size, multiplicity, redshifts} of these strong lens systems sets strong constraints on the total mass content {and its structure} in the centers of the clusters. These data will also be invaluable in the study of the morphological evolution and properties of cluster galaxies over a significant redshift range. These analyses will be supported by extensive ongoing optical and near-infrared imaging, and optical spectroscopy at Magellan, VLT and Gemini telescopes, as well as host of smaller facilities.

FGS 10610

Astrometric Masses of Extrasolar Planets and Brown Dwarfs

We propose observations with HST/FGS to estimate the astrometric elements {perturbation orbit semi-major axis and inclination} of extra-solar planets orbiting six stars. These companions were originally detected by radial velocity techniques. We have demonstrated that FGS astrometry of even a short segment of reflex motion, when combined with extensive radial velocity information, can yield useful inclination information {McArthur et al. 2004}, allowing us to determine companion masses. Extrasolar planet masses assist in two ongoing research frontiers. First, they provide useful boundary conditions for models of planetary formation and evolution of planetary systems. Second, knowing that a star in fact has a plantary mass companion, increases the value of that system to future extrasolar planet observation missions such as SIM PlanetQuest, TPF, and GAIA.

ACS/HRC 10609

Sizes, Shapes, and SEDs: Searching for Mass Segregation in the Super Star Clusters of Nearby Starburst

We propose to investigate mass segregation and star cluster evolution and dissolution processes in Super Star Cluster {SSC} populations in a small sample of nearby starburst galaxies. ACS/HRC and NICMOS images of these nearby {d < 10 Mpc} starbursts can reveal evidence for mass segregation in the form of variations in size, shape, and color of the SSCs as a function of wavelength. The compactness of the cluster light profiles, and hence the stellar mass distributions, is a critical indicator of the likely fate of an SSC: long life and eventual evolution into a globular-like cluster, or dissolution. These observations will allow us to generate spectral energy distributions {SEDs} for a large sample of the SSCs at all ages and extinctions in each system. We will combine the SEDs with population synthesis models and existing ground- based spectra and Spitzer images to estimate ages, reddenings, and masses thus derive a more complete picture of the star-formation histories of the galaxies. For the brightest and most likely virialized among the SSCs we will also constrain their initial mass functions {IMFs} using high- resolution spectroscopy. Conclusions about IMFs from this technique require detailed information about the SSC concentration, light profiles, and virial status, which are only possible via ACS data. The proposed observations will provide an extensive and comprehensive data set for a large number of SSCs. By addressing the issues of mass segregation, evaporation, and destruction of SSC populations, the proposed observations will provide strong constraints on theories regarding the processes involved in the formation and evolution of SSCs and globular clusters. Given the dire predictions for the lifetime of HST, and its tremendous impact on the study of SSCs, we feel that the proposed observations not only are necessary and timely {even urgent} but will also be a fitting { and possibly final} addition to HST's legacy in the study of starburst SSCs.

ACS/WFC 10592

An ACS Survey of a Complete Sample of Luminous Infrared Galaxies in the Local Universe

At luminosities above 10^11.4 L_sun, the space density of far-infrared selected galaxies exceeds that of optically selected galaxies. These `luminous infrared galaxies’ {LIRGs} are primarily interacting or merging disk galaxies undergoing enhanced star formation and Active Galactic Nuclei {AGN} activity, possibly triggered as the objects transform into massive S0 and elliptical merger remnants. We propose ACS/WFC imaging of a complete sample of 88 L_IR > 10^11.4 L_sun luminous infrared galaxies in the IRAS Revised Bright Galaxy Sample {RBGS: i.e., 60 micron flux density > 5.24 Jy}. This sample is ideal not only in its completeness and sample size, but also in the proximity and brightness of the galaxies. The superb sensitivity, resolution, and field of view of ACS/WFC on HST enables a unique opportunity to study the detailed structure of galaxies that sample all stages of the merger process. Imaging will be done with the F439W and F814W filters {B and I-band} to examine as a function of both luminosity and merger state {i} the evidence at optical wavelengths of star formation and AGN activity and the manner in which instabilities {bars and bridges} in the galaxies may funnel material to these active regions, {ii} the relationship between star formation and AGN activity, and {iii} the structural properties {AGN, bulge, and disk components} and fundamental parameters {effective radius and surface brightness} of LIRGs and their similarity with putative evolutionary byproducts {elliptical, S0 and classical AGN host galaxies}. This HST survey will also bridge the wavelength gap between a Spitzer imaging survey {covering seven bands in the 3.6-160 micron range} and a GALEX UV imaging survey of these galaxies, but will resolve complexes of star clusters and multiple nuclei at resolutions well beyond the capabilities of either Spitzer or GALEX. The combined datasets will result in the most comprehensive multiwavelength study of interacting and merging galaxies to date.

ACS/HRC 10557

Probing Asteroid Families for Evidence of Ultraviolet Space Weathering Effects

We propose six HST orbits to obtain UV reflectance spectra covering 200-460 nm of two Vesta asteroid family members, asteroid 832 Karin, and two Karin family members. These observations extend work done under a Cycle 13 AR grant, where we analyzed all of the existing IUE and HST S-class asteroids in the MAST database to investigate the effects of space weathering at UV wavelengths. Our hypothesis is that the manifestation of space weathering at UV wavelengths is a spectral bluing, in contrast with a spectral reddening at visible-NIR wavelengths, and that UV wavelengths can be more sensitive to relatively small amounts of weathering than longer wavelengths. The proposed observations will address two objectives: {1} Measure the UV-visible spectra of 832 Karin and two members of the young Karin family {absolute age of 5.8 My}, in order to determine whether intermediate space weathering is observable in objects likely pristine when they originated from the interior of Karin’s pa rent body. {2} Measure the UV-visible spectra of two members of the Vesta family to compare with our analysis of IUE Vesta spectra. These observations will probe Vesta’s interior, and test our hypothesis by contrasting the apparent amount of alteration on the surfaces of Vestoids with excavated material on Vesta.

ACS/HRC 10547

A SNAP Program to Obtain Complete Wavelength Coverage of Interstellar Extinction

We propose a SNAP program to obtain ACS/HRC spectra in the near-UV {PR200L} and near-IR {G800L} for a set of main sequence B stars with available IUE UV spectrophotometry, optical photometry, and 2MASS IR photometry. Together with these existing data, the new observations will provide complete photometric and spectrophotometric coverage from 1150 to 11000 A and enable us to produce complete extinction curves from the far-UV to the near-IR, with well- determined values of R{V}. The proposed set of 50 program sight lines includes the full range of interstellar extinction curve types and a wide range of color excesses. The new data will allow us to examine variability in the near-UV through near-IR spectral regions, including the UV-optical “knee” and the “Very Broad Structure.” We will examine the response of these features to different interstellar environments and their relationship to other curve features. These are largely unexplored aspects of extinction curves which will provide additional constraints on the properties of interstellar grains. The curves will be derived using stellar atmosphere models to represent the intrinsic spectral energy distributions of the program stars, eliminating the need to observe unreddened “standard stars.” This approach virtually eliminates “mismatch error”, allowing us to derive extinction curves with much higher precision than previously possible. In addition, the new spectra will provide higher S/N data for the peak of the 2175 A bump than previously available.

WFPC2 10534

Active Atmospheres on Uranus and Neptune

We propose Snapshot observations of Uranus and Neptune to monitor changes in their atmospheres on time scales of weeks, months, and years. Uranus is rapidly approaching equinox in 2007, with another 4 degrees of latitude becoming visible every year. Recent HST observations during this epoch {including 6818: Hammel, Lockwood, and Rages; 8680: Hammel, Rages, Lockwood, and Marley; 8634: Rages, Hammel, Lockwood, Marley, and McKay; and 10170: Rages, Hammel, Lockwood, and Marley} have revealed strongly wavelength-dependent latitudinal structure and the presence of numerous visible-wavelength cloud features in the northern hemisphere. Long-term ground-based observations {Lockwood and Thompson 1999} show seasonal brightness changes whose origins are not well understood. Recent near-IR images of Neptune obtained using adaptive optics on the Keck Telesccope together with images from our Cycle 9 Snapshot program {8634} show a general increase in activity at south temperate latitudes as well as the possible development of another Great Dark Spot. Further Snapshot observations of these two dynamic planets will elucidate the nature of long-term changes in their zonal atmospheric bands and clarify the processes of formation, evolution, and dissipation of discrete albedo features.

ACS/WFC/NIC3/WFPC2 10530

Probing Evolution And Reionization Spectroscopically {PEARS}

While imaging with HST has gone deep enough to probe the highest redshifts, e.g. the GOODS survey and the Ultra Deep Field, spectroscopic identifications have not kept up. We propose an ACS grism survey to get slitless spectra of all sources in a wide survey region {8 ACS fields} up to z =27.0 magnitude, and an ultradeep field in the HUDF reaching sources up to z =28 magnitude. The PEARS survey will: {1} Find and spectrocopically confirm all galaxies between z=4-7. {2} Probe the reionization epoch by robustly determining the luminosity function of galaxies and low luminosity AGNs at z = 4 – 6. With known redshifts, we can get a local measure of star formation and ionization rate in case reionization is inhomogeneous. {3} Study galaxy formation and evolution by finding galaxies in a contiguous redshift range between 4 < z < 7, and black hole evolution through a census of low-luminosity AGNs. {4} Get a robust census of galaxies with old stellar populations at 1 < z < 2.5, invaluable for checking consistency with heirarchical models of galaxy formation. Fitting these galaxies' spectra will yield age and metallicity estimates. {5} Study star-formation and galaxy assembly at its peak at 1< z < 2 by identifying emission lines in star-forming galaxies, old populations showing the 4000A break, and any combination of the two. {6} Constrain faint white dwarfs in the Galactic halo and thus measure their contribution to the dark matter halo. {7} Derive spectro-photometric redshifts by using the grism spectra along with broadband data. This will be the deepest unbiased spectroscopy yet, and will enhance the value of the multiwavelength data in UDF and the GOODS fields to the astronomical community. To this end we will deliver reduced spectra to the HST archives.

ACS/WFC 10523

The Halo Shape and Metallicity of Massive Spiral Galaxies

We propose to resolve the stellar populations of the halos of seven nearby, massive disk galaxies using a SNAP survey with WFC/ACS. These observations will provide star counts and color-magnitude diagrams 2-3 magnitudes below the tip of the Red Giant Branch along the two principal axes and one intermediate axis of each galaxy. We will measure the metallicity distribution functions and stellar density profiles from star counts down to very low average surface brightnesses, equivalent to ~31 V-mag per square arcsec. This proposal will create a unique sampling of galaxy halo properties, as our targets cover a range in galaxy mass, luminosity, inclination, and morphology. As function of these galaxy properties this survey will provide:- the first systematic measurement of radial light profiles and axial ratios of the diffuse stellar halos and outer disks of spiral galaxies- a comprehensive analysis of halo metallicity distributions as function of galaxy type and position within the galaxy- an unprecedented study of the stellar metallicity and age distribution in the outer disk regions where the disk truncations occur- the first comparative study of globular clusters and their field stellar populations We will use these fossil records of the galaxy assembly process to test halo formation models within the hierarchical galaxy formation scheme.

ACS/HRC/WFC 10514

Kuiper Belt Binaries: Probes of Early Solar System Evolution

Binaries in the Kuiper Belt are a scientific windfall: in them we have relatively fragile test particles which can be used as tracers of the early dynamical evolution of the outer Solar System. We propose a Snapshot program using the ACS/HRC that has a potential discovery efficiency an order of magnitude higher than the HST observations that have already discovered the majority of known transneptunian binaries. By more than doubling the number of observed objects in dynamically hot and cold subpopulations we will be able to answer, with statistical significance, the question of whether these groups differ in the abundance of binaries as a result of their particular dynamical paths into the Kuiper Belt. Today’s Kuiper Belt bears the imprints of the final stages of giant-planet building and migration; binaries may offer some of the best preserved evidence of that long-ago era.

ACS/HRC 10508

Orbits, Masses, and Densities of Three Transneptunian Binaries

The subset of transneptunian objects {TNOs} having natural satellites offers unique opportunities for physical studies of these distant relics from the outer parts of the protoplanetary nebula. HST/ACS is ideally suited to determining orbits of TNO satellites, resulting in the system masses. In conjunction with thermal emission observations by Spitzer, which provides sizes, we can determine the densities of TNOs. Densities offer a powerful window into their bulk compositions and interior structures.

ACS/WFC 10497

Cepheid Calibrations of the Luminosity of Two Reliable Type Ia Supernovae and a Re- determination of the Hubble Constant

We propose to determine the luminosity of two type Ia supernovae {SNe Ia}, 1995al in NGC 3021 and SN 2002fk in NGC 1309, by observing Cepheids in their spiral hosts. Modern CCD photometry yields an extremely tight Hubble diagram for SNe Ia with a precisely determined intercept {i.e., Delta H_0/H_0}. Yet, the measurement of the true Hubble constant via SNe Ia is limited by the calibration derived from problematic and unreliable SN data. Most of the SNe Ia calibrated by HST to date are significantly compromised by the systematics of photographic photometry, high reddening and SN peculiarity, and by the photometric anomolies associated with WFPC2. The extended reach of ACS now provides opportunities to more reliably calibrate SNe Ia and H_0. Our Cepheid calibration of a reliable SN Ia dataset, SN 1994ae, using ACS in Cycle 11 resulted in a 15% increase in H_0 from the value derived by the HST SN Ia Calibration Program. Yet, there remains a terribly small sample of reliable SN Ia data sets on which to base such a crucial cosmological result. SN 1995al and SN 2002fk are two of the best observed SNe Ia both with little reddening. They provide two opportunities to use ACS for placing the calibration of H_0 via SN Ia on firmer footing and potentially improve its precision.

ACS/WFC 10491

A Snapshot Survey of the most massive clusters of galaxies

We propose a snapshot survey of a sample of 124 high X-ray luminosity clusters in the redshift range 0.3-0.7. Similarly luminous clusters at these redshifts frequently exhibit strong gravitational lensing. The proposed observations will provide important constraints on the nature of the cluster mass distributions and a set of optically bright, lensed galaxies for further 8-10m spectroscopy. We acknowledge the broad community interest in this sample and waive our data rights for these observations.

ACS/HRC/WFC 10389

ACS CCDs daily monitor – Cycle 13 – Part 2

This program consists of a set of basic tests to monitor, the read noise, the development of hot pixels and test for any source of noise in ACS CCD detectors. The files, biases and dark will be used to create reference files for science calibration. This program will be for the entire lifetime of ACS.

ACS/HRC 10377

ACS Earth Flats

High signal sky flats will be obtained by observing the bright Earth with the HRC and WFC. These observations will be used to verify the accuracy of the flats currently used by the pipeline and will provide a comparison with flats derived via other techniques: L-flats from stellar observations, sky flats from stacked GO observations, and internal flats using the calibration lamps. Weekly coronagraphic monitoring is required to assess the changing position of the spots.

WFPC2 10359

WFPC2 CYCLE 13 Standard Darks

This dark calibration program obtains dark frames every week in order to provide data for the ongoing calibration of the CCD dark current rate, and to monitor and characterize the evolution of hot pixels. Over an extended period these data will also provide a monitor of radiation damage to the CCDs.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

9934 – GSAcq (1,2,1) failed due to search radius limit exceeded @ 246/0400z OBAD #1 Vehicle Axis Errors (arcsec): V1=-2010.77, V2-1418.87, V3=669.89, 3-axis (RSS) value=2250.53 OBAD #2 Vehicle Axix Errors (arcsec): V1=0.00, V2=-7.08. V3=-0.20, 3-axis (RSS) vaule=7.08

COMPLETED OPS NOTES: (None)

COMPLETED OPS REQUEST: (None)

                             SCHEDULED     SUCCESSFUL    FAILURE TIMES 
 FGS 
 Gsacq                   36                      35             246/0400z 
 HSTAR 9934 
 FGS Reacq                   19                      19 
 OBAD with Maneuver    110                     110 

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.