Status Report

NASA Hubble Space Telescope Daily Report # 3847

By SpaceRef Editor
April 29, 2005
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT        # 3847

PERIOD COVERED: DOY 116

OBSERVATIONS SCHEDULED

ACS/HRC 10185

When does Bipolarity Impose itself on the Extreme Mass Outflows from
AGB Stars? An ACS SNAPshot Survey

Essentially all well-characterized preplanetary nebulae {PPNe} —
objects in transition between the AGB and planetary nebula
evolutionary phases – are bipolar, whereas the mass-loss envelopes of
AGB stars are strikingly spherical. In order to understand the
processes leading to bipolar mass-ejection, we need to know at what
stage of stellar evolution does bipolarity in the mass-loss first
manifest itself? Our previous SNAPshot surveys of a PPNe sample {with
ACS & NICMOS} show that roughly half our targets observed are
resolved, with well-defined bipolar or multipolar morphologies.
Spectroscopic surveys of our sample confirm that these objects have
not yet evolved into planetary nebulae. Thus, the transformation from
spherical to aspherical geometries has already fully developed by the
time these dying stars have become preplanetary nebulae. From this new
and surprising result, we hypothesize that the transformation to
bipolarity begins during the very late AGB phase, and happens very
quickly, just before, or as the stars are evolving off the AGB. We
propose to test this hypothesis quantitatively, through a SNAPshot
imaging survey of very evolved AGB stars which we believe are nascent
preplanetary nebulae; with our target list being drawn from published
lists of AGB stars with detected heavy mass-loss {from millimeter-wave
observations}. This survey is crucial for determining how and when the
bipolar geometry asserts itself. Supporting kinematic observations
using long-slit optical spectroscopy {with the Keck}, millimeter and
radio interferometric observations {with OVRO, VLA & VLBA} are being
undertaken. The results from this survey {together with our previous
work} will allow us to draw general conclusions about the onset of
bipolar mass-ejection during late stellar evolution, and will provide
crucial input for theories of post-AGB stellar evolution. Our survey
will produce an archival legacy of long-standing value for future
studies of dying stars.

ACS/HRC 10255

A Never Before Explored Phase Space: Resolving Close White Dwarf / Red
Dwarf Binaries

We propose an ACS Snapshot imaging survey to resolve a well-defined
sample of highly probable white dwarf plus red dwarf close binaries.
These candidates were selected from a search for white dwarfs with
infrared excess from the 2MASS database. They represent unresolved
systems {separations less than approximately 2″ in the 2MASS images}
and are distributed over the whole sky. Our HST+ACS observations will
be sensitive to a separation range {1-20 AU} never before probed by
any means. The proposed study will be the first empirical test of
binary star parameters in the post-AGB phase, and cannot be
accomplished from the ground. By resolving as few as 20 of our ~100
targets with HST, we will be able to characterize the distribution of
orbital semi- major axes and secondary star masses.

ACS/HRC/WFC 10263

SAINTS – Supernova 1987A INTensive Survey

SAINTS is a program to observe SN 1987A, the brightest supernova in
383 years, as it transforms into supernova remnant {SNR} 1987A, the
youngest supernova remnant. HST is the unique and perfect match in
scale and in field for spatially-resolved observations of SN 1987A.
Rapid changes are taking place in a violent encounter between the
fastest-moving debris and the circumstellar ring. This one-time-only
event, leading to suddenly appearing hotspots and new emission that
can reveal previously hidden gas, is powered by shocks that can be
studied simultaneously with HST and with Chandra to great advantage.
Both the optical and X-ray flux from the ring are rising rapidly so
prompt observations are needed in Cycle 13. Our previous observations
reveal a remarkable reverse shock moving upstream through the
expanding debris. The reverse shock provides a powerful tool for
dissecting the radial structure of the vanished star. The debris from
the explosion itself, still excited by radioactivity, is now well
resolved by ACS and seen to be aspherical, providing direct clues to
the mechanism of the explosion. Many questions about SN 1987A remain
unanswered. SAINTS is a comprehensive attempt to use HST to establish
the facts of SN 1987A, help to answer interesting questions, and to
observe the birth of SNR 1987A.

ACS/WFC 10257

Astrometric and Photometric Study of NGC 6397 for Internal Motions,
Dark Binaries, and X-Ray Sources

We propose to observe the central regions of the globular cluster NGC
6397 with ACS/WFC once per month for the 10 months of its visibility
in Cycle 13. The project has three main goals: {1} Measure internal
motions for roughly 3000 stars within 150 arcseconds of the cluster
center, using archival WFPC2 as a first epoch. The motion of the
typical star will be measured to 10-20%. We will detect any central
black hole {BH} with a mass greater than 1000 solar masses, and will
also measure core-collapse signatures such as anisotropy. {2} Conduct
the first-ever search for heavy binaries by looking for the
astrometric “wobble” of the luminous secondary. We should find all
heavy binaries in the field with separations between 1 and 5 AU and
periods between 3 months and 5 years. {3} Search for optical
counterparts to X-ray sources found by Chandra.

ACS/WFC 10369

ACS internal CTE monitor

The charge transfer efficiency {CTE} of the ACS CCD detectors will
decline as damage due to on-orbit radiation exposure accumulates. This
degradation will be closely monitored at regular intervals, because it
is likely to determine the useful lifetime of the CCDs. All the data
for this program is acquired using internal targets {lamps} only, so
all of the exposures should be taken during Earth occultation time
{but not during SAA passages}. This program emulates the ACS
pre-flight ground calibration and post-launch SMOV testing {program
8948}, so that results from each epoch can be directly compared.
Extended Pixel Edge Response {EPER} and First Pixel Response {FPR}
data will be obtained over a range of signal levels for both the Wide
Field Channel {WFC}, and the High Resolution Channel {HRC}.

ACS/WFC/NIC/NIC3/WFPC 10246 2 The HST survey of the Orion Nebula
Cluster

We propose a Treasury Program of 104 HST orbits to perform the
definitive study of the Orion Nebula Cluster, the Rosetta stone of
star formation. We will cover with unprecedented sensitivity {23-25
mag}, dynamic range {~12 mag}, spatial resolution {50mas}, and
simultaneous spectral coverage {5 bands} a ~450 square arcmin field
centered on the Trapezium stars. This represents a tremendous gain
over the shallow WFC1 study made in 1991 with the aberrated HST on an
area ~15 times smaller. We maximize the HST observing efficiency using
ACS/WFC and WFPC2 in parallel with two opposite roll angles, to cover
the same total field. We will assemble the richest, most accurate and
unbiased HR diagram for pre-main-sequence objects ever made. Combined
with the optical spectroscopy already available for ~1000 sources and
new deep near-IR imaging and spectroscopy {that we propose as Joint
HST-NOAO observations}, we will be able to attack and possibly solve
the most compelling questions on stellar evolution: the calibration of
pre-main-sequence evolutionary tracks, mass segration and the
variation of the initial mass function in different environments, the
evolution of mass accretion rates vs. age and environment, disk
dissipation in environments dominated by hard vs. soft-UV radiation,
stellar multiplicity vs. disk fraction. In addition, we expect to
discover and classify an unknown, but substantial, population of
pre-Main Sequence binaries, low mass stars and brown dwarfs down to
~10 MJup. This is also the best possible way to discover dark
silhouette disks in the outskirts of the Orion Nebula and study their
evolutionary status through multicolor imaging. This program is timely
and extremely well leveraged to other programs targeting Orion: the
ACS H-alpha survey of the Orion Nebula, the recently completed 850ks
ultradeep Chandra survey, the large GTO programs to be performed with
SIRTF, plus the availability of 2MASS and various deep JHK surveys of
the core recently done with 8m class telescopes.

ACS/WFC/NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest-redshift SNe Ia known, all at z>1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z>1, beyond the reach of the ground
but squarely within the reach of HST with ACS, are crucial to break
the degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z>1 in the next two
cycles, complementing on-going surveys from the ground at z<1, and again doubling the precision of dark energy constraints. Should the current best fit model prove to be the correct one, the precision expected from the current proposal will suffice to rule out a cosmological constant at the 99% confidence level. Whatever the result, these objects will provide the basis with which to extend our empirical knowledge of this newly discovered and dominant component of the Universe, and will remain one of the most significant legacies of HST. In addition, our survey and follow-up data will greatly enhance the value of the archival data within the target Treasury fields for galaxy studies.

ACS/WFC/WFPC2 10092

The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey — COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I> 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full-spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble’s ultimate
legacy for understanding the evolution of both the visible and dark
universe.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC2 10176

Coronagraphic Survey for Giant Planets Around Nearby Young Stars

A systematic imaging search for extra-solar Jovian planets is now
possible thanks to recent progress in identifying “young stars near
Earth”. For most of the proposed young {<~ 30 Myrs} and nearby {<~ 60 pc} targets, we can detect a few Jupiter-mass planets as close as a few tens of AUs from the primary stars. This represents the first time that potential analogs of our solar system - that is planetary systems with giant planets having semi-major axes comparable to those of the four giant planets of the Solar System - come within the grasp of existing instrumentation. Our proposed targets have not been observed for planets with the Hubble Space Telescope previously. Considering the very successful earlier NICMOS observations of low mass brown dwarfs and planetary disks among members of the TW Hydrae Association, a fair fraction of our targets should also turn out to posses low mass brown dwarfs, giant planets, or dusty planetary disks because our targets are similar to {or even better than} the TW Hydrae stars in terms of youth and proximity to Earth. Should HST time be awarded and planetary mass candidates be found, proper motion follow-up of candidate planets will be done with ground-based AOs.

NIC3 10337

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 10092.

WFPC2 10360

WFPC2 CYCLE 13 INTERNAL MONITOR

This calibration proposal is the Cycle 13 routine internal monitor for
WFPC2, to be run weekly to monitor the health of the cameras. A
variety of internal exposures are obtained in order to provide a
monitor of the integrity of the CCD camera electronics in both bays
{gain 7 and gain 15}, a test for quantum efficiency in the CCDs, and a
monitor for possible buildup of contaminants on the CCD windows.

WFPC2 10363

WFPC2 CYCLE 13 Intflat and Visflat Sweeps and Filter Rotation Anomaly
Monitor

Using intflat observations, this WFPC2 proposal is designed to monitor
the pixel-to-pixel flatfield response and provide a linearity check.
The intflat sequences, to be done once during the year, are similar to
those from the Cycle 12 program 10075. The images will provide a
backup database as well as allow monitoring of the gain ratios. The
sweep is a complete set of internal flats, cycling through both
shutter blades and both gains. The linearity test consists of a series
of intflats in F555W, in each gain and each shutter. As in Cycle 12,
we plan to continue to take extra visflat, intflat, and earthflat
exposures to test the repeatability of filter wheel motions.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

COMPLETED OPS REQs: None

OPS NOTES EXECUTED: None

                            SCHEDULED     SUCCESSFUL    FAILURE TIMES 
 FGS Gsacq                 07                       07 
 FGS Reacq                 10                       10 
 FHST Update               09                       09 
 LOSS of LOCK 

SIGNIFICANT EVENTS: None

SpaceRef staff editor.