Status Report

NASA Hubble Space Telescope Daily Report # 3824

By SpaceRef Editor
March 25, 2005
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT       # 3824




CCD Hot Pixel Annealing

Hot pixel annealing will continue to be performed once every 4 weeks.
The CCD TECs will be turned off and heaters will be activated to bring
the detector temperatures to about +20C. This state will be held for
approximately 12 hours, after which the heaters are turned off, the
TECs turned on, and the CCDs returned to normal operating condition.
To assess the effectiveness of the annealing, a bias and four dark
images will be taken before and after the annealing procedure for both
WFC and HRC. The HRC darks are taken in parallel with the WFC darks.
The charge transfer efficiency {CTE} of the ACS CCD detectors declines
as damage due to on-orbit radiation exposure accumulates. This
degradation has been closely monitored at regular intervals, because
it is likely to determine the useful lifetime of the CCDs. We will now
combine the annealling activity with the charge transfer efficiency
monitoring and also merge into the routine dark image collection. To
this end, the CTE monitoring exposures have been moved into this
proposal . All the data for this program is acquired using internal
targets {lamps} only, so all of the exposures should be taken during
Earth occultation time {but not during SAA passages}. This program
emulates the ACS pre-flight ground calibration and post-launch SMOV
testing {program 8948}, so that results from each epoch can be
directly compared. Extended Pixel Edge Response {EPER} and First Pixel
Response {FPR} data will be obtained over a range of signal levels for
both the Wide Field Channel {WFC}, and the High Resolution Channel


The White Dwarf Cooling Age and Dynamical History of the Metal-Poor
Globular Cluster NGC 6397 We propose to determine the white dwarf
cooling age in the nearest metal-poor {[Fe/H]=- 2} globular cluster,
NGC 6397. This globular cluster provides the best opportunity to test
the white dwarf cooling age in such a metal-poor system and at the
same time provide a comparison with the more metal-rich cluster {M4}
which we recently successfully observed with HST. Any {or even no} age
difference between these clusters will be important in understanding
the age-metallicity relation for these systems which reflects the star
formation history in the early Galaxy. The absolute age is an
important cosmological constraint. We expect to be able to detect age
DIFFERENCES between these clusters at the 0.5 Gyr level and absolute
ages should be accurate to 1.0 Gyr. In addition, and in contrast with
M4, NGC 6397 is highly dynamically evolved, has a collapsed core, and
the distribution of its white dwarfs throughout the cluster have
almost certainly been modified by dynamical processes. We are using
N-body simulations specifically developed for this cluster to
understand these modifications and to include their effects in our
measurement of the white dwarf luminosity function and cooling age.
Among the dynamical questions we expect to answer with this proposal
are: 1} what was the primordial binary frequency in NGC 6397? 2} can
we explain the high central concentration with a population of massive
white dwarfs and/or neutron stars? 3} do we see sufficient central
binaries to reverse the core collapse of the cluster?

FGS 10106

An Astrometric Calibration of the Cepheid Period-Luminosity Relation

We propose to measure the parallaxes of 10 Galactic Cepheid variables.
When these parallaxes {with 1-sigma precisions of 10% or better} are
added to our recent HST FGS parallax determination of delta Cep
{Benedict et al 2002}, we anticipate determining the Period-Luminosity
relation zero point with a 0.03 mag precision. In addition to
permitting the test of assumptions that enter into other Cepheid
distance determination techniques, this calibration will reintroduce
Galactic Cepheids as a fundamental step in the extragalactic distance
scale ladder. A Period-Luminosity relation derived from solar
metallicity Cepheids can be applied directly to extragalactic solar
metallicity Cepheids, removing the need to bridge with the Large
Magellanic Cloud and its associated metallicity complications.

FGS 10202

Resolving OB Binaries in the Carina Nebula, Resuming the Survey

In March 2002 we carried out a small, high-angular resolution survey
of some of the brightest OB stars in the Carina Nebula with FGS1r in
an attempt to resolve binary systems which had thus far evaded
detection by other techniques. Of 23 stars observed, 5 new OB binaries
were discovered with component separations ranging from 0.015″
to0.325″. This yield over the spatial domain of FGS1r’s angular
resolution, coupled with published statistics of the incidence of OB
stars in short-period spectroscopic, and long-period visual binaries
suggests that the fraction of binarity or multiplicity among OB stars
is near unity. Our unexpected resolution of the prototype O2 If* star
HD 93129A as a 55 milli-arcsecond double is a case in point that great
care must be exercised when one attempts to establish the IMF and
upper-mass cuttoff at the high-mass end of the HR diagram. We propose
to resume the survey to observe a larger, statistically meaningful
sample of OB stars to establish a firm assessment of multiplicity at
the high-mass end of the IMF in these clusters. We will also
investigate the single- star/binary-star status of several
astrophysically important, individual stars in order to enable a
better understanding of the evolution of high-mass stars.

NIC1 10208

NICMOS Differential Imaging Search for Planetary Mass Companions to
Nearby Young Brown Dwarfs

We propose to use the differential spectral imaging capability of
HST/NICMOS {NIC1} to search for planetary mass companions. We target
the twelve most nearby {within 30 pc}, isolated {no known close
companion}, and young {< 1Gyr} brown dwarfs. All of them have spectral type L and show signs of Lithium absorption, which clearly proves their substellar nature and youth. Planetary mass companions with masses down to 6 Jupiter masses, and at separations larger than 3 A.U. are bright enough for a direct detection with HST/NICMOS using the spectral differential imaging technique in two narrow-band filters placed on and off molecular bands. The proposed project has the potential to lead to the first direct detection of a planetary mass object in orbit around a nearby brown dwarf.

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration – CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC2 10169

Star Formation in Luminous Infrared Galaxies: giant HII Regions and
Super Star Clusters

Luminous Infrared Galaxies {LIRGs, LIR = 10^11-10^12Lsol} and
Ultraluminous Infrared Galaxies {LIR>10^12Lsol} account for
approximately 75% of all the galaxies detected in the mid-infrared in
the redshift range z=0-1.5. In the local universe it is found that
LIRGs are predominantly powered by intense star formation {SF}.
However, the physical conditions and processes governing such dramatic
activity over scales of tens to a few hundred parsecs are poorly
known. In the last decade HST has been playing a significant role,
mainly with the discovery of super star clusters {SSCs}, and more
recently, giant HII regions. Based on observations of a few LIRGs, we
found that these giant HII regions and associated SSCs appear to be
more common in LIRGs than in normal galaxies, and may dominate the
star formation activity in LIRGs. A larger sample is required to
address fundamental questions. We propose an HST/NICMOS targeted
campaign of a volume limited sample {v<5200km/s} of 24 LIRGs. This proposal will probe the role of giant HII regions in the overall energetics of the current star formation, their relation to SSCs, and the dependence of star formation properties on other parameters of LIRGs. Such detailed knowledge of the SF properties of LIRGs in the local universe is essential for understanding galaxies at high redshift.

NIC2 10173

Infrared Snapshots of 3CR Radio Galaxies

Radio galaxies are an important class of extragalactic objects: they
are one of the most energetic astrophysical phenomena and they provide
an exceptional probe of the evolving Universe, lying typically in high
density regions but well-represented across a wide redshift range. In
earlier Cycles we carried out extensive HST observations of the 3CR
sources in order to acquire a complete and quantitative inventory of
the structure, contents and evolution of these important objects.
Amongst the results, we discovered new optical jets, dust lanes,
face-on disks with optical jets, and revealed point-like nuclei whose
properties support FR-I/BL Lac unified schemes. Here, we propose to
obtain NICMOS infrared images of 3CR sources with z<0.3 as a major enhancement to an already superb dataset. We aim to deshroud dusty galaxies, study the underlying host galaxy free from the distorting effects of dust, locate hidden regions of star formation and establish the physical characteristics of the dust itself. We will measure frequency and spectral energy distributions of point-like nuclei, expected to be stronger and more prevalent in the IR, seek spectral turnovers in known synchrotron jets and find new jets. We will strongly test unified AGN schemes and merge these data with existing X-ray to radio observations. The resulting database will be an incredibly valuable resource to the astronomical community for years to come.

NIC2 10177

Solar Systems In Formation: A NICMOS Coronagraphic Survey of
Protoplanetary and Debris Disks

Until recently, despite decades of concerted effort applied to
understanding the formation processes that gave birth to our solar
system, the detailed morphology of circumstellar material that must
eventually form planets has been virtually impossible to discern. The
advent of high contrast, coronagraphic imaging as implemented with the
instruments aboard HST has dramatically enhanced our understanding of
natal planetary system formation. Even so, only a handful of evolved
disks {~ 1 Myr and older} have been imaged and spatially resolved in
light scattered from their constituent grains. To elucidate the
physical processes and properties in potentially planet-forming
circumstellar disks, and to understand the nature and evolution of
their grains, a larger spatially resolved and photometrically reliable
sample of such systems must be observed. Thus, we propose a highly
sensitive circumstellar disk imaging survey of a well-defined and
carefully selected sample of YSOs {1-10 Myr T Tau and HAeBe stars} and
{> app 10 Myr} main sequence stars, to probe the posited epoch of
planetary system formation, and to provide this critically needed
imagery. Our resolved images will shed light on the spatial
distributions of the dust in these thermally emissive disks. In
combination with their long wavelength SEDs the physical properties of
the grains will be discerned, or constrained by our photometrically
accurate surface brightness sensitivity limits for faint disks which
elude detection. Our sample builds on the success of the exploratory
GTO 7233 program, using two-roll per orbit PSF-subtracted NICMOS
coronagraphy to provide the highest detection sensitivity to the
smallest disks around bright stars which can be imaged with HST. Our
sample will discriminate between proposed evolutionary scenarios while
providing a legacy of cataloged morphologies for interpreting mid- and
far-IR SEDs that the recently launched Spitzer Space Telescope will


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be

HSTAR 9749:  GSAcq(3,2,2) results in finelock backup (3,0,3) @
083/1414z using FGS3, due to QF2SSLEX) scan step limit exceeded on
FGS2 during it’s walkdown attempt.  Prior FM Updates at 083/13:38:44,
093/13:41:29 showed good attitude error vector.  MAP at 083/14:33:12
showed 3-axis (RSS) value ~ 12.000 (arcsec).  No Science data was
affected.  Under investigation.

HSTAR 9750:  Loss of Lock during guiding @ 084/0549z. After a
successful REacq(1,2,1) at 084/05:22:21 a loss of lock occurred at
084/05:48:41.  Fine lock was restored at 05:48:51. ACS and WFPC2
observations were taking observations at the time. Under


  • 17407-0  Genslew for Proposal 10431  Slot 7 @083/1641z
  • 17408-0  Genslew for Proposal 10431  Slot 8 @083/1643z


                             SCHEDULED     SUCCESSFUL    FAILURE TIMES FGS Gsacq                  11                       11 FGS Reacq                  4                         4 FHST Update                19                       19 LOSS of LOCK                                                        084/0549z (HSTAR#9750)


SpaceRef staff editor.