Status Report

NASA Hubble Space Telescope Daily Report # 3810

By SpaceRef Editor
March 7, 2005
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT        # 3810



NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration – CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

ACS/WFC 10421

Searching for Ancient Mergers in Early Type Host Galaxies of Classical

Recent HST imaging of QSO host galaxies indicates that at least a
large fraction of QSOs reside in seemingly undisturbed elliptical
hosts. However, our deep Keck spectroscopy of a sample of these host
galaxies indicates that many of these objects were involved in a major
starburst episode between 0.6 and 1.6 Gyr ago. We propose to obtain
very deep ACS WFC observations of the five hosts in this sample that
have the most reliable age determinations to search for fine structure
indicative of a past merger event and to test the hypothesis that the
elliptical hosts are the products of relatively recent merger events
rather than old galaxies which formed at high redshifts. By
establishing a firm connection between ancient mergers and the aging
starbursts in these classical QSOs, we will be able to estimate the
fraction of the total QSO population that results directly from
mergers accompanied by massive starbursts and to place constraints on
the duty cycle for QSO activity.

NIC3/WFPC2 10403

Ultraviolet Imaging of the UDF

The Hubble Deep Field North has uninterrupted observations at
wavelengths from Far- UV through NICMOS H-band, but the UDF goes no
bluer than B-band. We propose to complete the UDF coverage with deep
ultraviolet imaging of the Ultra-Deep Field {UDF} with the ACS-SBC in
the Far-UV {1500 Angstrom} and WFPC2 in the Near-UV {F300W}. We will
reach point source limits of ABmag=28.5, a factor of ten fainter than
the GALEX ultradeep surveys. Our dataset will add to the value of the
UDF legacy, and requires the unique capabilities of HST. In the spirit
of the UDF, we submit this proposal in the Treasury category. We
request a modest allocation of observing time for a Treasury program:
62 orbits. We will provide science quality images and photometric
catalogs to enable a range of research topics by the community. The
science goals of the team are to investigate the episode of strong
star formation activity in galaxies out to z=1, through the rest-frame
FUV luminosity function and the internal color structure of galaxies.
Far-UV number counts suggest that moderate redshift {z~0.5} starbursts
are undergoing a single, rapid burst of star-formation. We will
investigate this result by measuring the faint-end slope, alpha, of
the luminosity function. We will measure the star formation properties
of moderate redshift starburst galaxies and compare their morphologies
in the UV, optical, and near-IR. This catalog of starbursts will also
be important to the astronomical community in correlating unobscured
star-formation with the sources detected in the Spitzer Space
Telescope legacy observations of the field. With the high spatial
resolution data, will set strict limits on the flux escaping in
intermediate redshift {1


The Formation and Evolution of Spirals: An ACS and WFPC2 Imaging
Survey of Nearby Galaxies

Over 50% of galaxies in the local universe are spirals. Yet the star
formation histories and evolution of this crucial population remain
poorly understood. We propose to combine archival data with new
ACS/WFC and WFPC2 observations of 11 galaxies, to tackle a
comprehensive investigation of nearby spirals covering the entire
spiral sequence. The new observations will fill a serious deficiency
in HST’s legacy, and maximize the scientific return of existing HST
data. The filter combination of UBVI, and Halpha is ideal for studying
stellar populations, dust properties, and the ISM. Our immediate
scientific objectives are: {i} to use the resolved cluster
populations, both young massive clusters and ancient globular clusters
as a chronometer, to understand how spirals assembled as a function of
time; {ii} study the rapid disruption properties of young clusters;
and {iii} understand dust distributions in spirals from pc to kpc
scales. Each of these goals provides an important step towards
charting the evolution of galaxies, and an essential baseline for
interpreting the galaxy populations being surveyed in both the early
and present universe. The resolution of our survey, which exploits the
excellent imaging capabilities of HST’s two optical cameras, will
enable us to understand the record of star cluster, and galaxy
formation in a level of detail which is not possible for more distant
systems. Finally, the proposed observations will provide a key to
interpret an extensive, multiwavelength archive of space- and ground-
based data at lower spatial resolution {SPITZER, CHANDRA, GALEX,
NICMOS P alpha and H band imaging} for local spirals.

FGS 10387

Monitoring FGS1r’s Interferometric Response as a Function of Spectral

This proposal obtains reference point source Transfer Functions
{S-Curves} for FGS1r through the F583W filter and the F5ND attenuator
at the center position of the FGS1r FOV for a variety of stars of
different spectral types. These Transfer Functions are needed to
support the analysis of GO science data for the study of close and
wide binary star systems and for determining the angular size and
shape of extended sources. This proposal observes stars that have been
observed in previous cycles to monitor the long term evolution of the
FGS1r S-curves. This proposal also {1} monitors the FGS1r Lateral
Color response {using stars Latcol-A and Latcol-B}, {2} calibrates the
“Pos/Trans” bias of a star’s position as determined from Transfer mode
and Position mode observations, and {3} calibrates the shift of a
star’s centroid when observed with F5ND relative to that when observed
with F583W.

NIC1/NIC2/NIC3 10381

Photometric Stability

This NICMOS calibration proposal carries out photometric monitoring
observations during Cycle 13. The format of the program is identical
to that of the Cycle 12 program 9995


CCD Hot Pixel Annealing

Hot pixel annealing will continue to be performed once every 4 weeks.
The CCD TECs will be turned off and heaters will be activated to bring
the detector temperatures to about +20C. This state will be held for
approximately 12 hours, after which the heaters are turned off, the
TECs turned on, and the CCDs returned to normal operating condition.
To assess the effectiveness of the annealing, a bias and four dark
images will be taken before and after the annealing procedure for both
WFC and HRC. The HRC darks are taken in parallel with the WFC darks.
The charge transfer efficiency {CTE} of the ACS CCD detectors declines
as damage due to on-orbit radiation exposure accumulates. This
degradation has been closely monitored at regular intervals, because
it is likely to determine the useful lifetime of the CCDs. We will now
combine the annealling activity with the charge transfer efficiency
monitoring and also merge into the routine dark image collection. To
this end, the CTE monitoring exposures have been moved into this
proposal . All the data for this program is acquired using internal
targets {lamps} only, so all of the exposures should be taken during
Earth occultation time {but not during SAA passages}. This program
emulates the ACS pre-flight ground calibration and post-launch SMOV
testing {program 8948}, so that results from each epoch can be
directly compared. Extended Pixel Edge Response {EPER} and First Pixel
Response {FPR} data will be obtained over a range of signal levels for
both the Wide Field Channel {WFC}, and the High Resolution Channel

ACS/WFC 10368

External CTE Monitor

Monitor CTE changes during cycle 11. Determine CTE.


ACS CCDs daily monitor- cycle 13 – part 1

This program consists of a set of basic tests to monitor, the read
noise, the development of hot pixels and test for any source of noise
in ACS CCD detectors. The files, biases and dark will be used to
create reference files for science calibration. This programme will be
for the entire lifetime of ACS.

WFPC2 10362

WFPC2 Cycle 13 UV Earth Flats

Monitor flat field stability. This proposal obtains sequences of earth
streak flats to improve the quality of pipeline flat fields for the
WFPC2 UV filter set. These Earth flats will complement the UV earth
flat data obtained during cycles 8-12.

NIC3 10337

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 10092.

ACS/HRC 10272

A Snapshot Survey of the Sites of Recent, Nearby Supernovae

During the past few years, robotic {or nearly robotic} searches for
supernovae {SNe}, most notably our Lick Observatory Supernova Search
{LOSS}, have found hundreds of SNe, many of them in quite nearby
galaxies {cz < 4000 km/s}. Most of the objects were discovered before maximum brightness, and have follow-up photometry and spectroscopy; they include some of the best-studied SNe to date. We propose to conduct a snapshot imaging survey of the sites of some of these nearby objects, to obtain late-time photometry that {through the shape of the light and color curves} will help reveal the origin of their lingering energy. The images will also provide high- resolution information on the local environment of SNe that are far superior to what we can procure from the ground. For example, we will obtain color-color and color-magnitude diagrams of stars in these SN sites, to determine their progenitor masses and constraints on the reddening. Recovery of the SNe in the new HST images will also allow us to actually pinpoint their progenitor stars in cases where pre-explosion images exist in the HST archive. Use of ACS rather than WFPC2 will make our snapshot survey even more valuable than our Cycle 9 survey. This Proposal is complementary to our Cycle 13 archival proposal, in which we outline a plan for using existing HST images to glean information about SN environments.

ACS/HRC 10255

A Never Before Explored Phase Space: Resolving Close White Dwarf / Red

We propose an ACS Snapshot imaging survey to resolve a well-defined
sample of highly probable white dwarf plus red dwarf close binaries.
These candidates were selected from a search for white dwarfs with
infrared excess from the 2MASS database. They represent unresolved
systems {separations less than approximately 2″ in the 2MASS images}
and are distributed over the whole sky. Our HST+ACS observations will
be sensitive to a separation range {1-20 AU} never before probed by
any means. The proposed study will be the first empirical test of
binary star parameters in the post-AGB phase, and cannot be
accomplished from the ground. By resolving as few as 20 of our ~100
targets with HST, we will be able to characterize the distribution of
orbital semi- major axes and secondary star masses.

ACS/HRC 10225

Abundances in AGN Outflows: Putting Real Numbers Into Quasar Feedback

GN outflows impact the evolution of supermassive black holes, host
galaxies, and the surrounding IGM. To assess the importance of these
processes, it is essential to obtain the physical properties of real
AGN winds. Our proposed observations of the Seyfert 1 galaxy Mrk 509,
in combination with dedicated FUSE time, are designed to obtain the
first reliable determination of chemical abundances for an AGN
outflow. Previous attempts to measure abundances from outflow
absorption troughs did not account for velocity dependent covering
factors of the absorbers. This led to large uncertainties in measuring
absorption column densities, uncertainties which are magnified when
translated to abundances. To extract reliable column densities, we
created an array of analysis tools for modeling high-S/N echelle data
of doublets and higher multiplet lines from the same ion. After
carefully reviewing all the available targets we conclude that the
combination of high UV flux and unblended outflow troughs makes Mrk
509 the most promising target for obtaining abundances in AGN
outflows. Our proposed Mrk 509 observations will provide the best
input to date for accurately modeling the influence of AGN winds on
the galactic and inter-galactic environments.

ACS/WFC 10217

The ACS Fornax Cluster Survey

The two rich clusters nearest to the Milky Way, and the only large
collections of early- type galaxies within ~ 25 Mpc, are the Virgo and
Fornax Clusters. We propose to exploit the exceptional imaging
capabilities of the ACS/WFC to carry out the most comprehensive
imaging survey to date of early-type galaxies in Fornax: the ACS
Fornax Cluster Survey. Deep ACS/WFC images — in the F475W {g’} and
F850LP {z’} bands — will be acquired for 44 E, S0, dE, dE, N and dS0
cluster members. In Cycle 11, we initiated a similar program targeting
early-type galaxies in the Virgo Cluster {the ACS Virgo Cluster
Survey; GO-9401}. Our proposed survey of Fornax would yield an
extraordinary dataset which would complement that already in hand for
Virgo, and allow a definitive study of the role played by environment
in the structure, formation and evolution of early-type galaxies and
their globular cluster systems, nuclei, stellar populations, dust
content, nuclear morphologies and merger histories. It would also be a
community resource for years to come and, together with the ACS Virgo
Cluster Survey, constitute one of the lasting legacies of HST.

FGS 10202

Resolving OB Binaries in the Carina Nebula, Resuming the Survey

In March 2002 we carried out a small, high-angular resolution survey
of some of the brightest OB stars in the Carina Nebula with FGS1r in
an attempt to resolve binary systems which had thus far evaded
detection by other techniques. Of 23 stars observed, 5 new OB binaries
were discovered with component separations ranging from 0.015″
to0.325″. This yield over the spatial domain of FGS1r’s angular
resolution, coupled with published statistics of the incidence of OB
stars in short-period spectroscopic, and long-period visual binaries
suggests that the fraction of binarity or multiplicity among OB stars
is near unity. Our unexpected resolution of the prototype O2 If* star
HD 93129A as a 55 milli-arcsecond double is a case in point that great
care must be exercised when one attempts to establish the IMF and
upper-mass cuttoff at the high-mass end of the HR diagram. We propose
to resume the survey to observe a larger, statistically meaningful
sample of OB stars to establish a firm assessment of multiplicity at
the high-mass end of the IMF in these clusters. We will also
investigate the single- star/binary-star status of several
astrophysically important, individual stars in order to enable a
better understanding of the evolution of high-mass stars.

ACS/HRC 10198

Probing the Dynamics of the Galactic Bar through the Kinematics of
Microlensed Stars

The observed optical depths to microlensing of stars in the Galactic
bulge are difficult to reconcile with our present understanding of
Galactic dynamics. The main source of uncertainty in those comparisons
is now shifting from microlensing measurements to the dynamical models
of the Galactic bar. We propose to constrain the Galactic bar models
with proper motion observations of Bulge stars that underwent
microlensing by determining both the kinematic identity of the
microlensed sources and the importance of streaming motions. The
lensed stars are typically farther than randomly selected stars.
Therefore, our proper motion determinations for 36 targeted MACHO
events will provide valuable constraints on the dynamics of bulge
stars as a function of distance. The first epoch data for our proposed
events is already available in the HST archive so the project can be
completed within a single HST cycle. The exceptional spatial
resolution of HST is essential for completion of the project.
Constraints on the total mass in the bulge will ultimately lead to the
determination of the amount of dark matter in inner Galaxy.

ACS/WFC/NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest-redshift SNe Ia known, all at z>1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z>1, beyond the reach of the ground
but squarely within the reach of HST with ACS, are crucial to break
the degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z>1 in the next two
cycles, complementing on-going surveys from the ground at z<1, and again doubling the precision of dark energy constraints. Should the current best fit model prove to be the correct one, the precision expected from the current proposal will suffice to rule out a cosmological constant at the 99% confidence level. Whatever the result, these objects will provide the basis with which to extend our empirical knowledge of this newly discovered and dominant component of the Universe, and will remain one of the most significant legacies of HST. In addition, our survey and follow-up data will greatly enhance the value of the archival data within the target Treasury fields for galaxy studies.

NIC1 10143

Ultracool companions to the nearest L dwarfs

We propose to conduct the most sensitive survey to date for low mass
companions to nearby L dwarfs. We will use NICMOS to image targets
drawn from a volume-complete sample of 70 L dwarfs within 20 parsecs.
The combination of infrared imaging and proximity will allow us to
search for T dwarf companions at separations as small as 1.6 AU. This
is crucial, since no ultracool binaries are currently known with
separations exceeding 15 AU. Only 10 dwarfs in this sample have
previous HST observations primarily at optical wavelengths. With the
increased sensitivity of our survey, we will provide the most
stringent test to date of brown dwarf models which envisage formation
as ejected stellar embryos. In addition, our observations will be
capable of detecting binaries with mass ratios as low as 0.3, and will
therefore also test the apparent preference for equal-mass ultracool
binaries. Finally, our observations offer the best prospect to date of
detecting companions significantly cooler than the coolest t dwarf
currently known.

ACS/WFC/NIC3/WFPC 10134 2 The Evolution and Assembly of Galactic
Disks: Integrated studies of mass, stars and gas in the Extended Groth

This project is a 126-orbit imaging survey in F606W/F814W ACS to
measure the evolution of galaxy disks from redshift z = 1.4 to the
present. By combining HST imaging with existing observations in the
Extended Groth Strip, we can for the first time simultaneously
determine the mass in dark matter that underlies disks, the mass in
stars within those disks, and the rate of formation of new stars from
gas in the disks, for samples of >1, 000 objects. ACS observations are
critical for this work, both for reliable identifications of disks and
for determining their sizes and inclinations. Combining these data
with the kinematics measured from high-resolution Keck DEIMOS spectra
will give dynamical masses that include dark matter. Stellar masses
can be measured separately using ground-based BRIK and Spitzer IRAC
GTO data, while cross-calibrated star formation rates will come from
DEEP2 spectra, GALEX, and Spitzer/MIPS. The field chosen is the only
one where all multiwavelength data needed will be available in the
near term. These data will show how the fundamental properties of
disks {luminosity, rotation speed, scale length} and their scaling
relations have evolved since z~1, and also will measure the build-up
of stellar disks directly, providing fundamental tests of disk
formation and evolution. In addition to the above study of disk
galaxies, the data will also be used to measure the evolution of
red-sequence galaxies and their associated stellar populations. ACS
images will yield the number of red-sequence galaxies versus time,
together with their total associated stellar mass. ACS images are
crucial to classify red-sequence galaxies into normal E/S0s versus
peculiar types and to measure radii, which will complete the suite of
fundamental structural parameters needed to study evolution. We will
measure the zeropoints of major scaling laws {Fundamental Plane,
radius versus sigma}, as well as evolution in characteristic
quantities such as L*, v*, and r*. Stellar population ages will be
estimated from high-resolution Keck DEIMOS spectra and compared to SED
evolution measured from GALEX, HST, Spitzer, and ground-based colors.
Important for both disk and red-galaxy programs are parallel exposures
to be taken with both NIC3 {J and H} and WFPC2 {B}. These are arranged
so that ACS, WFPC2, and NIC3 all overlap where possible , providing a
rich data set of galaxies imaged with all three HST cameras from B to
H. These data will be used to measure restframe visible morphologies
and UV star-formation rates for galaxies near the edge of the survey,
to discover and count EROs below the Keck spectroscopic limit of R =
24, and to provide an improved database of photometric redshifts for
galaxies in the overlap regions.

WFPC2 10132

UV Confirmation of New Quasar Sightlines Suitable for the Study of
Intergalactic Helium

The reionization of intergalactic helium is thought to have occurred
between redshifts of about 3 and 4. The study of HeII Lyman-alpha
absorption towards a half-dozen quasars at 2.72.9 SDSS quasars, but with special
emphasis on extending helium studies to the highest redshift
sightlines. Our proposed approach has already proven successful, and
additional sightlines will enable follow-up spectal observations to
measure the spectrum and evolution of the ionizing background
radiation, the density of intergalactic baryons, and the epoch of
reionization of the IGM.


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be

HSTAR 9738:  GSacq(2,1,2) resulted in FLBU @ 064/11:29z- During LOD
GSacq(2,1,2)scheduled at 064/11:02:39 resulted Fine Lock Backup on
FGS#2 (2,0,2). No flags to indicate SSLEX.  Possible observations
affected: ACS 134-136, NIC 90. Under investigation.

17392-1  FSW TDRSS-E Elements Update @ 066/00:33:27z

1311-1  Transfer NICMOS FSW CS 4.0Ce to CMD Queue @ 063/18:50z

                            SCHEDULED     SUCCESSFUL    FAILURE TIMES 
 FGS Gsacq                 31                       31 
 FGS Reacq                 18                       18 
 FHST Update               58                       58 


TDRSS-E 1st service using new TDRSS vehicle ephemeris (by I&C/DMS SE
on 3/6/5): At 066/00:31 and with the new SA066 Science Mission
Specification (SMS), the 1st scheduled service with the TDRSS-East S/C
utilizing the newly updated vehicle ephemerides was successfully
completed as expected. This verification activity closes OR 17392-1,
FSW TDRSS-E Elements Update. Signal strength at the WSGT Integrated
Receiver was nominal, and comparison of commanded GEA angles between
the SMS (as shown in the SA066P.RG2 file) and telemetered gimbal
angles was as expected.

SpaceRef staff editor.