Status Report

NASA Hubble Space Telescope Daily Report # 3772

By SpaceRef Editor
January 11, 2005
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT       # 3772




NICMOS Post-SAA calibration – CR Persistence Part 1.

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark.

NIC2 10418

Morphologies and Color Gradients of Galaxies with the Oldest Stellar
Populations at High Redshifts

We have isolated a sample of 9 luminous {~2L*} galaxies with the very
oldest stellar populations at their respective redshifts. The galaxies
have been found in radio-source fields chosen to be at the key
redshifts z~1.5 and z~2.5, which allow the cleanest separation of old
stellar populations from highly reddened starbursts with colors
derived from standard filter combinations. Ground-based observations
in excellent seeing and with adaptive optics of 3 of these galaxies
indicate that all 3 are dominated by well relaxed disks of old stars,
suggesting that the first large stellar systems to form in the
universe were disks in which star formation proceeded extremely
rapidly and efficiently. In order to test this conjecture, we are
requesting NICMOS2 exposures of our sample to obtain high S/N imaging
in the F160W filter to determine detailed morphologies of the old
stellar population, coupled with either NICMOS2 F110W or ACS F814W
exposures {depending on redshift} to determine color gradients and/or
other systematic color variations that might provide clues to
formation processes.

NIC3/WFPC2 10403

Ultraviolet Imaging of the UDF

The Hubble Deep Field North has uninterrupted observations at
wavelengths from Far-UV through NICMOS H- band, but the UDF goes no
bluer than B-band. We propose to complete the UDF coverage with deep
ultraviolet imaging of the Ultra-Deep Field {UDF} with the ACS-SBC in
the Far-UV {1500 Angstrom} and WFPC2 in the Near-UV {F300W}. We will
reach point source limits of ABmag=28.5, a factor of ten fainter than
the GALEX ultradeep surveys. Our dataset will add to the value of the
UDF legacy, and requires the unique capabilities of HST. In the spirit
of the UDF, we submit this proposal in the Treasury category. We
request a modest allocation of observing time for a Treasury program:
62 orbits. We will provide science quality images and photometric
catalogs to enable a range of research topics by the community. The
science goals of the team are to investigate the episode of strong
star formation activity in galaxies out to z=1, through the rest-frame
FUV luminosity function and the internal color structure of galaxies.
Far-UV number counts suggest that moderate redshift {z~0.5} starburst
are undergoing a single, rapid burst of star-formation. We will
investigate this result by measuring the faint-end slope, alpha, of
the luminosity function. We will measure the star formation properties
of moderate redshift starburst galaxies and compare their morphologies
in the UV, optical, and near-IR. This catalog of starbursts will also
be important to the astronomical community in correlating unobscured
star-formation with the sources detected in the Spitzer Space
Telescope legacy observations of the field. With the high spatial
resolution data, will set strict limits on the flux escaping in
intermediate redshift {1 < z < 2} galaxies at wavelengths below the rest-frame Lyman limit, and thus infer the contribution of star forming galaxies at z~5 to the metagalactic ionizing radiation.


ACS CCDs daily monitor- cycle 13 – part 1

This program consists of a set of basic tests to monitor, the read
noise, the development of hot pixels and test for any source of noise
in ACS CCD detectors. The files, biases and dark will be used to
create reference files for science calibration. This programme will be
for the entire lifetime of ACS.

ACS/WFC/NIC3 10339


Type Ia supernovae {SNe Ia} provide the only direct evidence for an
accelerating universe, an extraordinary result that needs the most
rigorous test. The case for cosmic acceleration rests on the
observation that SNe Ia at z = 0.5 are about 0.25 mag fainter than
they would be in a universe without acceleration. A powerful and
straightforward way to assess the reliability of the SN Ia measurement
and the conceptual framework of its interpretation is to look for
cosmic deceleration at z > 1. This would be a clear signature of a
mixed dark-matter and dark-energy universe. Systematic errors in the
SNe Ia result attributed to grey dust or cosmic evolution of the SN Ia
peak luminosity would not show this change of sign. We have obtained a
toehold on this putative “epoch of deceleration” with SN 1997ff at z
= 1.7, and 3 more at z > 1 from our Cycle 11 program, all found and
followed by HST. However, this is too important a test to rest on just
a few objects, anyone of which could be subject to a lensed
line-of-sight or misidentification. Here we propose to extend our
measurement with observations of twelve SNe Ia in the range 1.0 < z < 1.5 or 6 such SNe Ia and 1 ultradistant SN Ia at z = 2, that will be discovered as a byproduct from proposed Treasury and DD programs. These objects will provide a much firmer foundation for a conclusion that touches on important questions of fundamental physics.


The Shadow Echoes of the Unique R Coronae Borealis Star, UW Cen

Understanding the R Coronae Borealis {RCB} stars is a key test for any
theory aiming to explain hydrogen deficiency in post-AGB stars. The
RCB stars are rare hydrogen-deficient carbon-rich supergiants that
undergo very spectacular declines in brightness of up to 8 magnitudes
at irregular intervals as dust forms near the star along the line of
sight. UW Cen is unique among the cool RCB stars in having a visible
circumstellar shell. The morphology of the nebula appears to change as
different parts are illuminated by light from the central star
modulated by shifting, thick dust clouds near its surface. The central
star acts like a “lighthouse, ” shining through gaps between the
near-star dust clouds, and lighting up different portions of the outer
nebula. We propose a scientific program in which a small number of
observations using ACS/HRC will exploit UW Cen’s unique circumstellar
shell to address two critical elements in understanding RCB stars:
determining an accurate distance to the star, and studying the
otherwise unobservable dust clouds forming near the star’s surface. We
will model the images using Monte Carlo techniques to calculate the
radiative transfer through arbitrary distributions of dust viewed from
any angle.

ACS/WFC 10258

Tracing the Emergence of the Hubble Sequence Among the Most Luminous
and Massive Galaxies

There is mounting evidence that the redshift range 1 < z < 2 was an important era when massive galaxies assembled their stellar content and assumed their present--day morphologies. Despite extensive HST imaging surveys, however, there is very little data in the optical rest frame {i.e., observed near--infrared} on the morphologies of the most luminous galaxies at these redshifts. We propose to image a carefully selected set of 20 of the most luminous, K--band selected GOODS galaxies at 1.3 < z < 2, using NICMOS camera 2. This offers diffraction--limited, critically sampled imaging at 1.6 microns to ensure the best angular resolution for comparison to ACS. The galaxies are chosen to span a simple 4--fold parameter space of morphological and spectral type, in order to provide the most information about the variety of massive galaxy properties in this redshift range. We will investigate the emergence of large scale--length disks, stable spiral structure, mature bulges with red stellar populations, central bar structures, the incidence of disturbed morphology, the existence {or lack thereof} of blue ellipticals, and other questions that concern the evolution and maturation of the brightest, largest, and most massive ordinary galaxies in this critical redshift range.


Pre-History of a Starburst: Deep Imaging of IC 10

The peculiar Local Group dwarf galaxy IC 10 is the nearest case of a
starburst in progress. Starburst galaxies are a prime laboratory for
studying the physical processes which regulate star formation in
galaxies; as the closest example, IC 10 is potentially the key galaxy
for understanding the starburst phenomenon. We propose to obtain deep
optical images of IC 10 with the ACS/WFC to achieve three main goals:
1} To make the first estimates of the pre-burst history of IC 10 based
on morphological and statistical analysis of its {V, I} color-
magnitude diagram; 2} to search for evidence of a past history of
burst-dormancy cycles; and 3} to explore the connection between the
ages and locations of bright stars and the large-scale structure of
the interstellar medium. The distance {0.8 Mpc}, extinction {2.5 mag},
and high surface brightness of IC 10 make these goals unobtainable
except with HST. The observations proposed here will yield far and
away the deepest images, in absolute magnitudes, ever obtained for any
starburst galaxy. Our photometry will reach to magnitudes {V, I} =
{28.5, 27.5}, which is below the level of the red clump/horizontal
branch and the location of the main-sequence turnoff of stars as old
as a billion years. For the first time, it will be possible to measure
the detailed history of a starburst host for the Gigayear time period
leading up to the burst. The horizontal branch morphology and colors
will provide new information on the metallicity and age distribution
of stars spanning the entire age of IC 10. Because of its close
distance, IC 10 is the ONLY starburst galaxy for which this type of
information is obtainable now or in the next decade. We propose to use
WFPC2 in parallel to search for a low-surface brightness population
associated with the neutral gas filaments surrounding IC 10.

FGS 10202

Resolving OB Binaries in the Carina Nebula, Resuming the Survey

In March 2002 we carried out a small, high-angular resolution survey
of some of the brightest OB stars in the Carina Nebula with FGS1r in
an attempt to resolve binary systems which had thus far evaded
detection by other techniques. Of 23 stars observed, 5 new OB binaries
were discovered with component separations ranging from 0.015″
to0.325″. This yield over the spatial domain of FGS1r’s angular
resolution, coupled with published statistics of the incidence of OB
stars in short-period spectroscopic, and long-period visual binaries
suggests that the fraction of binarity or multiplicity among OB stars
is near unity. Our unexpected resolution of the prototype O2 If* star
HD 93129A as a 55 milli-arcsecond double is a case in point that great
care must be exercised when one attempts to establish the IMF and
upper-mass cuttoff at the high-mass end of the HR diagram. We propose
to resume the survey to observe a larger, statistically meaningful
sample of OB stars to establish a firm assessment of multiplicity at
the high-mass end of the IMF in these clusters. We will also
investigate the single-star/binary-star status of several
astrophysically important, individual stars in order to enable a
better understanding of the evolution of high-mass stars.

ACS/HRC 10199

The Most Massive Galaxies in the Universe: Double Trouble?

We are proposing an HST snapshot survey of 70 objects with velocity
dispersion larger than 350 km/s, selected from the Sloan Digital Sky
Survey. Potentially this sample contains the most massive galaxies in
the Universe. Some of these objects may be superpositions; HST imaging
is the key to determining if they are single and massive or if they
are two objects in projection. The objects which HST imaging shows to
be single objects are interesting because they potentially harbor the
most massive black holes, and because their existence places strong
constraints on galaxy formation models. When combined with ground
based data already in hand, the objects which HST imaging shows are
superpositions provide valuable information about interaction rates of
early-type galaxies as well as their dust content. They also constrain
the allowed parameter space for models of binary gravitational lenses
{such models are currently invoked to explain discrepancies in the
distribution of lensed image flux ratios and separations}.

ACS/WFC/NIC3 10196

Morphologies of a new class of rest-frame optical selected high
redshift galaxies

We have obtained deep very Js, H, Ks imaging with the VLT of two
fields with excellent optical imaging, in order to study high redshift
galaxies. Using these Near-IR images, we identified a class of
galaxies with Js – Ks color larger than 2.3. Photometric redshifts and
spectroscopic follow-up showed that their mean redshift is 2.5 +- 0.7.
These galaxies are complementary to Lyman break selected galaxies: the
overlap is minimal, and the rest-frame optical colors of the Js-Ks
selected galaxies are much redder. Their contribution to the stellar
mass density is comparable to that of Lyman breaks in our fields. SED
fits and Near-IR spectroscopy of the Js-Ks selected galaxies indicate
median ages between 1 and 2 Gyr, a factor of 3-5 older than the ages
of Lyman break galaxies estimated by similar methods. They are likely
the oldest galaxies at z=2.5, and may be evolving into the most
massive galaxies at z=0. We propose to obtain images of the
spectroscopically confirmed Js-Ks galaxies with the NICMOS/NIC3 camera
in the H band. These galaxies lie the field of MS1054- 03, for which
we have excellent groundbased and HST optical imaging. The increased
depth and spatial resolution of the NICMOS imaging will allow us to
determine the restframe optical morphologies of the Js – Ks galaxies,
in order to study their intensity profiles and regularity, to
decompose the largest galaxies in bulges and disks, to measure scale
lengths, and to look for evidence of merging and recent star
formation. This study would provide us unique insight into the nature
of these red galaxies, their evolutionary history and their likely
descendants at low redshift.

ACS/WFC/NIC3 10195

Probing the Surroundings of a Highly Luminous Redshift 6.5 Galaxy

We propose deep images of a recently discovered galaxy at z=6.535,
which is among the most luminous Lyman-alpha emitting galaxies known
at high redshift. The brightness and rarity of this source imply that
it is associated with a high peak in the matter density distribution.
{It is the brightest Lyman alpha source in 2e5 comoving Mpc3, with a
luminosity of 6 L*.} Further objects in this peak are expected to be
visible with HST’s sensitivity. The Lyman alpha line has a large rest
frame equivalent width, with a lower bound >100 Angstroms. Such a
large equivalent width would be impossible for objects embedded in
neutral gas, and instead requires either that {a} the universe was
reionized before z=6.5 or {b} the galaxy resides in a local ionized
bubble, in which case an additional contribution to the ionizing
photon budget from presently undetected neighbors is required. With 19
orbits of ACS and NICMOS imaging, we will measure this object’s
morphology and spectral energy distribution, thus searching for either
active nuclei or old stellar populations. We will also search for
possible neighbors, which could establish the first known galaxy group
at z>6, and may provide sufficient ionizing flux to allow the escape
of the observed Lyman alpha photons in a neutral universe. If
neighbors are not found, it will lead to an upper bound on the neutral
fraction in the general IGM at z=6.5.

ACS/WFC/NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest- redshift SNe Ia known, all at z>1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z>1, beyond the reach of the ground
but squarely within the reach of HST with ACS, are crucial to break
the degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z>1 in the next two
cycles, complementing on-going surveys from the ground at z<1, and again doubling the precision of dark energy constraints. Should the current best fit model prove to be the correct one, the precision expected from the current proposal will suffice to rule out a cosmological constant at the 99% confidence level. Whatever the result, these objects will provide the basis with which to extend our empirical knowledge of this newly discovered and dominant component of the Universe, and will remain one of the most significant legacies of HST. In addition, our survey and follow-up data will greatly enhance the value of the archival data within the target Treasury fields for galaxy studies.

NIC2 10177

Solar Systems In Formation: A NICMOS Coronagraphic Survey of
Protoplanetary and Debris Disks

Until recently, despite decades of concerted effort applied to
understanding the formation processes that gave birth to our solar
system, the detailed morphology of circumstellar material that must
eventually form planets has been virtually impossible to discern. The
advent of high contrast, coronagraphic imaging as implemented with the
instruments aboard HST has dramatically enhanced our understanding of
natal planetary system formation. Even so, only a handful of evolved
disks {~ 1 Myr and older} have been imaged and spatially resolved in
light scattered from their constituent grains. To elucidate the
physical processes and properties in potentially planet-forming
circumstellar disks, and to understand the nature and evolution of
their grains, a larger spatially resolved and photometrically reliable
sample of such systems must be observed. Thus, we propose a highly
sensitive circumstellar disk imaging survey of a well-defined and
carefully selected sample of YSOs {1-10 Myr T Tau and HAeBe stars} and
{> app 10 Myr} main sequence stars, to probe the posited epoch of
planetary system formation, and to provide this critically needed
imagery. Our resolved images will shed light on the spatial
distributions of the dust in these thermally emissive disks. In
combination with their long wavelength SEDs the physical properties of
the grains will be discerned, or constrained by our photometrically
accurate surface brightness sensitivity limits for faint disks which
elude detection. Our sample builds on the success of the exploratory
GTO 7233 program, using two-roll per orbit PSF-subtracted NICMOS
coronagraphy to provide the highest detection sensitivity to the
smallest disks around bright stars which can be imaged with HST. Our
sample will discriminate between proposed evolutionary scenarios while
providing a legacy of cataloged morphologies for interpreting mid- and
far-IR SEDs that the recently launched Spitzer Space Telescope will

NIC2 10176

Coronagraphic Survey for Giant Planets Around Nearby Young Stars

A systematic imaging search for extra-solar Jovian planets is now
possible thanks to recent progress in identifying “young stars near
Earth”. For most of the proposed young {<~ 30 Myrs} and nearby {<~ 60 pc} targets, we can detect a few Jupiter-mass planets as close as a few tens of AUs from the primary stars. This represents the first time that potential analogs of our solar system - that is planetary systems with giant planets having semi-major axes comparable to those of the four giant planets of the Solar System - come within the grasp of existing instrumentation. Our proposed targets have not been observed for planets with the Hubble Space Telescope previously. Considering the very successful earlier NICMOS observations of low mass brown dwarfs and planetary disks among members of the TW Hydrae Association, a fair fraction of our targets should also turn out to posses low mass brown dwarfs, giant planets, or dusty planetary disks because our targets are similar to {or even better than} the TW Hydrae stars in terms of youth and proximity to Earth. Should HST time be awarded and planetary mass candidates be found, proper motion follow-up of candidate planets will be done with ground-based AOs.

NIC2 10173

Infrared Snapshots of 3CR Radio Galaxies

Radio galaxies are an important class of extragalactic objects: they
are one of the most energetic astrophysical phenomena and they provide
an exceptional probe of the evolving Universe, lying typically in high
density regions but well-represented across a wide redshift range. In
earlier Cycles we carried out extensive HST observations of the 3CR
sources in order to acquire a complete and quantitative inventory of
the structure, contents and evolution of these important objects.
Amongst the results, we discovered new optical jets, dust lanes,
face-on disks with optical jets, and revealed point-like nuclei whose
properties support FR-I/BL Lac unified schemes. Here, we propose to
obtain NICMOS infrared images of 3CR sources with z<0.3 as a major enhancement to an already superb dataset. We aim to deshroud dusty galaxies, study the underlying host galaxy free from the distorting effects of dust, locate hidden regions of star formation and establish the physical characteristics of the dust itself. We will measure frequency and spectral energy distributions of point-like nuclei, expected to be stronger and more prevalent in the IR, seek spectral turnovers in known synchrotron jets and find new jets. We will strongly test unified AGN schemes and merge these data with existing X-ray to radio observations. The resulting database will be an incredibly valuable resource to the astronomical community for years to come.

ACS/WFC 10152

A Snapshot Survey of a Complete Sample of X-ray Luminous Galaxy
Clusters from Redshift 0.3 to 0.7

We propose a public, uniform imaging survey of a well-studied,
complete, and homogeneous sample of X-ray clusters. The sample of 73
clusters spans the redshift range between 0.3-0.7. The samples spans
almost 2 orders of magnitude of X-ray luminosity, where half of the
sample has X-ray luminosities greater than 10^44 erg/s {0.5-2.0 keV}.
These snapshots will be used to obtain a fair census of the the
morphology of cluster galaxies in the cores of clusters, to detect
radial and tangential arc candidates, to detect optical jet
candidates, and to provide an approximate estimate of the shear signal
of the clusters themselves, and potentially an assessment of the
contribution of large scale structure to lensing shear.

ACS/HRC 10137

Cluster Archeology: The Origin of Ultra-compact Dwarf Galaxies

Ultra-compact dwarf {UCD} galaxies are a new type of galaxy we have
discovered in the central regions of the Fornax and Virgo galaxy
clusters. Our most recent observations in the Fornax Cluster show that
UCDs outnumber normal galaxies in the centre of that cluster. Here we
propose snapshot imaging of UCDs in the Fornax and Virgo clusters to
test theories of how these fascinating objects formed. In particular
we wish to image Virgo cluster UCDs for which we have ground-based
Keck spectroscopy to test predictions that they formed more recently
than the Fornax UCDs.

WFPC2 10132

UV Confirmation of New Quasar Sightlines Suitable for the Study of
Intergalactic Helium

The reionization of intergalactic helium is thought to have occurred
between redshifts of about 3 and 4. The study of HeII Lyman-alpha
absorption towards a half-dozen quasars at 2.7 < z < 3.5 demonstrates the great potential of such probes of the IGM, but the current critically-small sample limits confidence in resulting cosmological inferences. The requisite unobscured quasar sightlines to high-redshift are extremely rare, especially due to severe absorption in random intervening Lyman-limit systems, but SDSS provides hundreds of bright, new quasars at such redshifts potentially suitable for HeII studies. Our cycle 13 SNAP program proposes to verify the UV detectability of 40 new, bright, z>2.9 SDSS quasars, but with special
emphasis on extending helium studies to the highest redshift
sightlines. Our proposed approach has already proven successful, and
additional sightlines will enable follow-up spectal observations to
measure the spectrum and evolution of the ionizing background
radiation, the density of intergalactic baryons, and the epoch of
reionization of the IGM.

FGS 10109

The Distance and Mass of the Neutrino-Luminous White Dwarf PG 0122+200

PG 0122+200 is a pulsating hot white dwarf that is believed to radiate
more energy as neutrinos than it does as photons. We propose to
measure with FGS the trigonometric parallax of PG 0122+200 and thereby
determine its distance, luminosity, and mass. Ongoing investigations
from the ground will infer the neutrino luminosity through its effect
on the pulsation periods, thus testing standard and non-standard
lepton theory, but the stellar mass must first be known. The pulsation
spectrum of PG 0122+200 admits two alternative seismological
interpretations, each implying a different mass, luminosity, and
distance. Measurement of an accurate distance will resolve the matter
once and for all and precisely determine the stellar mass. This
project represents the first test of lepton physics in dense {log rho
= 6} plasma and is relevant to the many areas of stellar physics in
which neutrino interactions are important, including recent theories
intended to solve the solar- neutrino problem.


The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey — COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I> 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full- spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble’s ultimate
legacy for understanding the evolution of both the visible and dark


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be

HSTAR 9645: GS Acquisition (1,3,1) @ 007/10:35:25Z resulted in FL
backup (3,0,3) using FGS 3 due to SSLE on FGS 1. There were no FM
Updates scheduled prior to T2 slew @ 007/10:25:31Z. Under

HSTAR 9646: OTA SE review of PTAS weekly processing revealed GS
Acquisition (3,1,1) @ 346/14:41:32Z toggled between spiral and coarse
track three time before entering FL walkdown. Under investigation.

HSTAR 9647: GS Acquisition (1,2,1) @ 008/12:02:57Z resulted in FL
backup (2,0,2) due to SSLE on FGS 1. Under investigation.

HSTAR 9649: During ZOE, GS Acquisition (1,3,3) @ 009/10:01:28Z
resulted in FL backup due to SSLE on FGS 1. Under investigation.

HSTAR 9650: GS Acquisition (2,3,2) @ 009/20:07:01Z failed due to SRLE
on FGS 2 and 3. GS Acquisition was on its second attempt when we
switched to FN format. The Full Maneuver Updates @ 009/19:52:01 and
19:54:46Z showed attitude errors of -7.942, 33.625, and 16.474 and
0.043, 0.148 and 0.578 arcsec. Under investigation.


17359-0 Null Genslew for Proposal 10425 – Slot 2 & 3 (No Commands) @


1295-0 Raise upper limit for SMAELEXT @ 010/02:22z

                             SCHEDULED     SUCCESSFUL    FAILURE TIMES
FGS Gsacq                  31                       30              see 
HSTAR 9650
FGS Reacq                  17                       17
Update                52                       52


SpaceRef staff editor.