Status Report

NASA Hubble Space Telescope Daily Report # 3766

By SpaceRef Editor
January 1, 2005
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT        # 3766



NIC2 10189

PANS-Probing Acceleration Now with Supernovae

Type Ia supernovae {SNe Ia} provide the most direct evidence for an
accelerating Universe, a result widely attributed to dark energy.
Using HST in Cycle 11 we extended the Hubble diagram with 6 of the 7
highest- redshift SNe Ia known, all at z>1.25, providing conclusive
evidence of an earlier epoch of cosmic deceleration. The full sample
of 16 new SNe Ia match the cosmic concordance model and are
inconsistent with a simple model of evolution or dust as alternatives
to dark energy. Understanding dark energy may be the biggest current
challenge to cosmology and particle physics. To understand the nature
of dark energy, we seek to measure its two most fundamental
properties: its evolution {i.e., dw/dz}, and its recent equation of
state {i.e., w{z=0}}. SNe Ia at z>1, beyond the reach of the ground
but squarely within the reach of HST, are crucial to break the
degeneracy in the measurements of these two basic aspects of dark
energy. The SNe Ia we have discovered and measured with HST in Cycle
11, now double the precision of our knowledge of both properties. Here
we propose to quadruple the sample of SNe Ia at z>1 in the next two
cycles, complementing on-going surveys from the ground at z<1, and again doubling the precision of dark energy constraints. Should the current best fit model prove to be the correct one, the precision expected from the current proposal will suffice to rule out a cosmological constant at the 99% confidence level. Whatever the result, these objects will provide the basis with which to extend our empirical knowledge of this newly discovered and dominant component of the Universe, and will remain one of the most significant legacies of HST. In addition, our survey and follow-up data will greatly enhance the value of the archival data within the target Treasury fields for galaxy studies.

NIC3 10195

Probing the Surroundings of a Highly Luminous Redshift 6.5 Galaxy

We propose deep images of a recently discovered galaxy at z=6.535,
which is among the most luminous Lyman-alpha emitting galaxies known
at high redshift. The brightness and rarity of this source imply that
it is associated with a high peak in the matter density distribution.
{It is the brightest Lyman alpha source in 2e5 comoving Mpc3, with a
luminosity of 6 L*.} Further objects in this peak are expected to be
visible with HST’s sensitivity. The Lyman alpha line has a large rest
frame equivalent width, with a lower bound >100 Angstroms. Such a
large equivalent width would be impossible for objects embedded in
neutral gas, and instead requires either that {a} the universe was
reionized before z=6.5 or {b} the galaxy resides in a local ionized
bubble, in which case an additional contribution to the ionizing
photon budget from presently undetected neighbors is required. We will
also search for possible neighbors, which could establish the first
known galaxy group at z>6, and may provide sufficient ionizing flux to
allow the escape of the observed Lyman alpha photons in a neutral
universe. If neighbors are not found, it will lead to an upper bound
on the neutral fraction in the general IGM at z=6.5.

WFPC2 10265

The Formation History of Andromeda

We propose deep observations of Andromeda’s outer disk and giant tidal
stream, to reconstruct their star formation histories. As the nearest
giant galaxy, Andromeda offers the best testing ground for
understanding galaxy formation and evolution. Given the dramatic
increase in sensitivity offered by the ACS, we can now resolve stars
on the old main sequence in the other giant spiral of the Local Group,
and employ the same direct age diagnostics that have been used for
decades in the study of Galactic globular clusters. In Cycle 11, we
successfully observed a field in the Andromeda halo and constructed a
deep color-magnitude diagram reaching well below the oldest main
sequence turnoff. In Cycle 13, we propose to extend these observations
to the outer disk and tidal stream of Andromeda, to constrain their
star formation histories and compare them to that of the halo. The
combined observations from these two programs will offer a dramatic
advance in our understanding of the overall evolution of spiral

NIC1 10143

Ultracool companions to the nearest L dwarfs

We propose to conduct the most sensitive survey to date for low mass
companions to nearby L dwarfs. We will use NICMOS to image targets
drawn from a volume-complete sample of 70 L dwarfs within 20 parsecs.
The combination of infrared imaging and proximity will allow us to
search for T dwarf companions at separations as small as 1.6 AU. This
is crucial, since no ultracool binaries are currently known with
separations exceeding 15 AU. Only 10 dwarfs in this sample have
previous HST observations primarily at optical wavelengths. With the
increased sensitivity of our survey, we will provide the most
stringent test to date of brown dwarf models which envisage formation
as ejected stellar embryos. In addition, our observations will be
capable of detecting binaries with mass ratios as low as 0.3, and will
therefore also test the apparent preference for equal-mass ultracool
binaries. Finally, our observations offer the best prospect to date of
detecting companions significantly cooler than the coolest t dwarf
currently known.

NIC2 10173

Infrared Snapshots of 3CR Radio Galaxies

Radio galaxies are an important class of extragalactic objects: they
are one of the most energetic astrophysical phenomena and they provide
an exceptional probe of the evolving Universe, lying typically in high
density regions but well-represented across a wide redshift range. In
earlier Cycles we carried out extensive HST observations of the 3CR
sources in order to acquire a complete and quantitative inventory of
the structure, contents and evolution of these important objects.
Amongst the results, we discovered new optical jets, dust lanes,
face-on disks with optical jets, and revealed point-like nuclei whose
properties support FR-I/BL Lac unified schemes. Here, we propose to
obtain NICMOS infrared images of 3CR sources with z<0.3 as a major enhancement to an already superb dataset. We aim to deshroud dusty galaxies, study the underlying host galaxy free from the distorting effects of dust, locate hidden regions of star formation and establish the physical characteristics of the dust itself. We will measure frequency and spectral energy distributions of point-like nuclei, expected to be stronger and more prevalent in the IR, seek spectral turnovers in known synchrotron jets and find new jets. We will strongly test unified AGN schemes and merge these data with existing X-ray to radio observations. The resulting database will be an incredibly valuable resource to the astronomical community for years to come.


NICMOS Post-SAA calibration – CR Persistence Part 1.

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark.

WFPC2 10132

UV Confirmation of New Quasar Sightlines Suitable for the Study of
Intergalactic Helium

The reionization of intergalactic helium is thought to have occurred
between redshifts of about 3 and 4. The study of HeII Lyman-alpha
absorption towards a half-dozen quasars at 2.72.9 SDSS quasars, but with special
emphasis on extending helium studies to the highest redshift
sightlines. Our proposed approach has already proven successful, and
additional sightlines will enable follow-up spectal observations to
measure the spectrum and evolution of the ionizing background
radiation, the density of intergalactic baryons, and the epoch of
reionization of the IGM.


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be

HSTAR 9637- GSacq(3,0,3) failed to Gyro Control. The GSacq(3,0,3) at
365/05:10:03 failed at 05:12:29 due to scan step limit exceeded on FGS
3. Observations affected: WFPC 75 and 76. Under investigation.


17356-0 Recover ACS from Suspend to ANNEAL @365/0104z


                           SCHEDULED     SUCCESSFUL    FAILURE TIMES
FGS Gsacq                11                       10             See HSTAR 
FGS Reacq                 3                          3
FHST Update              18                       18


ACS was successfully recovered at 365/01:04 via OPS Request 17356 from
Suspend to Anneal mode. No problems were encountered during the

ACS will remain in Anneal mode until ~365/12:40 when ACS will
intercept stored commanding and start its transition to Operate. The
transition will complete at ~365/16:20 and ACS will then resume its
nominal science schedule.

SpaceRef staff editor.