Status Report

NASA Hubble Space Telescope Daily Report # 3743

By SpaceRef Editor
November 25, 2004
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science



Note: Due to the holiday the next Daily Report will be issued on
Monday November 29, 2004.


ACS/WFC 10174

Dark-matter halos and evolution of high-z early-type galaxies

Gravitational lensing and stellar dynamics provide two complementary
methods to determine the mass distribution and evolution of luminous
and dark-matter in early-type {E/S0} galaxies. The combined study of
stellar dynamics and gravitational lensing allows one to break
degeneracies inherent to each method separately, providing a clean
probe of the internal structure of massive galaxies. Since most lens
galaxies are at redshifts z=0.1-1.0, they also provide the required
look-back time to study their structural and stellar-population
evolution. We recently analyzed 5 E/S0 lens galaxies between z=0.5 and
1.0, combining exquisite Hubble Space Telescope imaging data with
kinematic data from ground-based Keck spectroscopy, placing the first
precise constraints on the dark- matter mass fraction and its inner
slope beyond the local Universe. To expand the sample to ~30 systems
— required to study potential trends and evolution in the E/S0 mass
profiles — we propose to target the 49 E/S0 lens-galaxy candidates
discovered by Bolton et al. {2004} from the Sloan Digital Sky Survey
{SDSS}. With the average lens rate being 40% and some systems having a
lensing probability close to unity, we expect to discover ~20 strong
gravitational lenses from the sample. This will triple the current
sample of 9 E/S0 systems, with data in hand. With the sample of 30
systems, we will be able to determine the average slope of the
dark-matter and total mass profile of E/S0 galaxies to 10% and 4%
accuracy, respectively. If present, we can simultaneously detect 10%
evolution in the total mass slope with 95% confidence. This will
provide unprecedented constraints on E/S0 galaxies beyond the local
Universe and allow a stringent test of their formation scenarios and
the standard cosmological model.

ACS/WFC/NIC3 10339


Type Ia supernovae {SNe Ia} provide the only direct evidence for an
accelerating universe, an extraordinary result that needs the most
rigorous test. The case for cosmic acceleration rests on the
observation that SNe Ia at z = 0.5 are about 0.25 mag fainter than
they would be in a universe without acceleration. A powerful and
straightforward way to assess the reliability of the SN Ia measurement
and the conceptual framework of its interpretation is to look for
cosmic deceleration at z > 1. This would be a clear signature of a
mixed dark-matter and dark-energy universe. Systematic errors in the
SNe Ia result attributed to grey dust or cosmic evolution of the SN Ia
peak luminosity would not show this change of sign. We have obtained a
toehold on this putative “epoch of deceleration” with SN 1997ff at z
= 1.7, and 3 more at z > 1 from our Cycle 11 program, all found and
followed by HST. However, this is too important a test to rest on just
a few objects, anyone of which could be subject to a lensed
line-of-sight or misidentification. Here we propose to extend our
measurement with observations of twelve SNe Ia in the range 1.0 < z <
1.5 or 6 such SNe Ia and 1 ultradistant SN Ia at z = 2, that will be
discovered as a byproduct from proposed Treasury and DD programs.
These objects will provide a much firmer foundation for a conclusion
that touches on important questions of fundamental physics.

FGS 10197

The Astrophysical Parameters of Very Metal-Poor Halo Binaries

Little is currently known concerning the mass-luminosity relation
{MLR} of Population II stars. In Cycle 10, we began an initial study
with FGS1 to resolve a sample of known spectroscopic binaries
preselected as high-velocity and/or low metallicity objects. This has
resulted in significant new information about the astrophysical
parameters of metal- poor stars, but was limited mainly to
intermediate metallicities, not to true Population II stars. A new
sample of metal-poor spectroscopic binaries identified by Latham and
his collaborators {e.g. Latham et al 2002} contains three new very
metal-poor objects resolvable with FGS. We propose to observe these
binaries and obtain additional observations of two very important
resolved targets from our initial sample. As with that program, we
will couple the already-known spectroscopic orbits with astrometric
information which only FGS can deliver at present. To ensure that the
most will be gained from these data, we also request observations of
three metal-poor single stars to be used as calibration objects. In
combination with results from our previous program, these observations
can be expected to resolve the question of the location of the
Population II main sequence and give valuable insight into the
accuracy of isochrone fitting for determination of globular clusters
ages. Due to the combination of target magnitudes and expected
separations, no object in this sample can be resolved without the
unique capabilities of FGS.

FGS 10432

Precise Distances to Nearby Planetary Nebulae

We propose to carry out astrometry with the FGS to obtain accurate and
precise distances to four nearby planetary nebulae. In 1992, Cahn et
al. noted that “The distances to Galactic planetary nebulae remain a
serious, if not THE most serious, problem in the field, despite
decades of study.” Twelve years later, the same statement still
applies. Because the distances to planetary nebulae are so uncertain,
our understanding of their masses, luminosities, scale height, birth
rate, and evolutionary state is severely limited. To help remedy this
problem, HST astrometry can guarantee parallaxes with half the error
of any other available approach. These data, when combined with
parallax measurements from the USNO, will improve distance
measurements by more than a factor of two, producing more accurate
distances with uncertainties that are of the order of ~6%. Lastly,
most planetary nebula distance scales in the literature are
statistical. They require several anchor points of known distance in
order to calibrate their zero point. Our program will provide "gold
standard" anchor points by the end of 2006, a decade before any
anticipated results from future space astrometry missions.

NIC1/NIC2/NIC3 8794

NICMOS Post-SAA calibration – CR Persistence Part 5

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC3 9846

The Origins of Sub-stellar Masses: Searching for the End of the IMF

Is there a preferred scale that defines the end of the IMF? We propose
to test this hypothesis by conducting a deep spectroscopic survey of
extremely low mass objects in the embedded young cluster associated
with NGC1333. At a distance of only 300pc, this cluster is one of the
nearest examples of a dense young cluster. We will be able to obtain
R=200 spectra and photometry for 40-60 cluster members with masses
between 5-40 Jupiter masses at an age of 1 Myr observed through
A{v}<10 mag. This will enable us to estimate temperatures and
luminosities for all sources detected in the survey. We will compare
their positions in an H-R diagram to PMS evolutionary tracks in order
to estimate their ages and masses. For a solar metallicity cloud at a
temperature of 10 K, the minimum mass for fragmentation is thought to
be 10 Jupiter masses. A statistically significant sample of objects
detected below this limit would challenge the role of hierarchical
fragmentation in limiting substellar masses. The proximity of this
cluster combined with the unique sensitivity, wavelength coverage, and
multi-object spectroscopic capability of NICMOS on HST make this
experiment possible.

WFPC2 10360


This calibration proposal is the Cycle 13 routine internal monitor for
WFPC2, to be run weekly to monitor the health of the cameras. A
variety of internal exposures are obtained in order to provide a
monitor of the integrity of the CCD camera electronics in both bays
{gain 7 and gain 15}, a test for quantum efficiency in the CCDs, and a
monitor for possible buildup of contaminants on the CCD windows.


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None

17321-0 Genslew for proposal 10267 – slot 1 @ 328/2106z

1290-0 Adjust Recharge Ratio Limit for High Sun/Orbit Time @ 328/1538z

                           SCHEDULED     SUCCESSFUL    FAILURE TIMES
FGS Gsacq                12                       12
FGS Reacq                 04                       04
FHST Update              13                       13


SpaceRef staff editor.