Status Report

NASA Hubble Space Telescope Daily Report # 3672

By SpaceRef Editor
August 12, 2004
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT # 3672

PERIOD COVERED: DOY 224

OBSERVATIONS SCHEDULED

ACS/HRC 10130

Systemic Proper Motions of the Magellanic Clouds from Astrometry with
ACS: II. Second Epoch Images

We request second epoch observations with ACS of Magellanic Cloud
fields centered on the 40 quasars in the LMC and SMC for which we have
first epoch Cycle 11 data. The new data will determine the systemic
proper motion of the Clouds. An extensive astrometric analysis of the
first epoch data shows that follow-up observations with a two year
baseline will allow us to measure the proper motion of the clouds to
within 0.022 mas/year in each of the two orthogonal directions
{assuming that we can image 25 quasars, i.e., with a realistic
Snapshot Program completion rate}. The best weighted combination of
all previous measurements has a seven times larger error than what we
expect. We will determine the proper motion of the clouds with 2%
accuracy. When combined with HI data for the Magellanic Stream this
will constrain both the mass distribution in the Galactic Halo and
theoretical models for the origin of the Magellanic Stream. Previous
measurements are too crude for such constraints. Our data will provide
by far the most accurate proper motion measurement for any Milky Way
satellite.

ACS/HRC 10185

When does Bipolarity Impose itself on the Extreme Mass Outflows from
AGB Stars? An ACS SNAPshot Survey

Essentially all well-characterized preplanetary nebulae {PPNe} —
objects in transition between the AGB and planetary nebula
evolutionary phases – are bipolar, whereas the mass-loss envelopes of
AGB stars are strikingly spherical. In order to understand the
processes leading to bipolar mass-ejection, we need to know at what
stage of stellar evolution does bipolarity in the mass-loss first
manifest itself? Our previous SNAPshot surveys of a PPNe sample {with
ACS & NICMOS} show that roughly half our targets observed are
resolved, with well-defined bipolar or multipolar morphologies.
Spectroscopic surveys of our sample confirm that these objects have
not yet evolved into planetary nebulae. Thus, the transformation from
spherical to aspherical geometries has already fully developed by the
time these dying stars have become preplanetary nebulae. From this
new and surprising result, we hypothesize that the transformation to
bipolarity begins during the very late AGB phase, and happens very
quickly, just before, or as the stars are evolving off the AGB. We
propose to test this hypothesis quantitatively, through a SNAPshot
imaging survey of very evolved AGB stars which we believe are nascent
preplanetary nebulae; with our target list being drawn from published
lists of AGB stars with detected heavy mass-loss {from millimeter-wave
observations}. This survey is crucial for determining how and when the
bipolar geometry asserts itself. Supporting kinematic observations
using long-slit optical spectroscopy {with the Keck}, millimeter and
radio interferometric observations {with OVRO, VLA & VLBA} are being
undertaken. The results from this survey {together with our previous
work} will allow us to draw general conclusions about the onset of
bipolar mass-ejection during late stellar evolution, and will provide
crucial input for theories of post-AGB stellar evolution. Our survey
will produce an archival legacy of long-standing value for future
studies of dying stars.

ACS/HRC/WFC 10061

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/WFC 10174

Dark-matter halos and evolution of high-z early-type galaxies

Gravitational lensing and stellar dynamics provide two complementary
methods to determine the mass distribution and evolution of luminous
and dark-matter in early-type {E/S0} galaxies. The combined study of
stellar dynamics and gravitational lensing allows one to break
degeneracies inherent to each method separately, providing a clean
probe of the internal structure of massive galaxies. Since most lens
galaxies are at redshifts z=0.1-1.0, they also provide the required
look-back time to study their structural and stellar-population
evolution. We recently analyzed 5 E/S0 lens galaxies between z=0.5 and
1.0, combining exquisite Hubble Space Telescope imaging data with
kinematic data from ground-based Keck spectroscopy, placing the first
precise constraints on the dark-matter mass fraction and its inner
slope beyond the local Universe. To expand the sample to ~30 systems
— required to study potential trends and evolution in the E/S0 mass
profiles — we propose to target the 49 E/S0 lens-galaxy candidates
discovered by Bolton et al. {2004} from the Sloan Digital Sky Survey
{SDSS}. With the average lens rate being 40% and some systems having a
lensing probability close to unity, we expect to discover ~20 strong
gravitational lenses from the sample. This will triple the current
sample of 9 E/S0 systems, with data in hand. With the sample of 30
systems, we will be able to determine the average slope of the
dark-matter and total mass profile of E/S0 galaxies to 10% and 4%
accuracy, respectively. If present, we can simultaneously detect 10%
evolution in the total mass slope with 95% confidence. This will
provide unprecedented constraints on E/S0 galaxies beyond the local
Universe and allow a stringent test of their formation scenarios and
the standard cosmological model.

ACS/WFC 10216

Co-evolution of spheroids and black holes

The masses of the giant black holes in galaxies are correlated with
the luminosities, masses, and velocity dispersions of their host
spheroids. This empirical connection of phenomena on widely different
scales {from sub-parsec to kiloparsec} suggests that the evolution of
a galaxy and its central black hole are closely linked. We propose to
test various unified formation models, by measuring the cosmic
evolution of the black hole/spheroid relations, back to z=0.37 {a
lookback time of 4 Gyrs}. We will obtain 1-orbit ACS images of a
sample of 20 Seyfert 1 galaxies, for which we already have extensive
new ground-based measures of the black hole masses and the stellar
velocity dispersions. HST resolution is required for accurate
measurement of the nonstellar AGN continuum, and the luminosity and
effective radius of the bulge of each host galaxy. This will complete
the set of observables needed to map the co-evolution of spheroids and
black-holes. The proposed sample is the minimum required to make the
first measure of the black hole mass/bulge correlation and of the
fundamental plane for active galaxies outside the local Universe.

ACS/WFC 10260

The Most Massive Star Clusters: Supermassive Globular Clusters or
Dwarf Galaxy Nuclei?

Evidence is mounting that the most massive globular clusters, such as
Omega Centauri and M31-G1, may be related to the recently discovered
"Ultra-Compact Dwarfs" and the dense nuclei of dE, N galaxies.
However, no systematic imaging investigation of these supermassive
globular clusters — at the level of Omega Cen and beyond — has been
done, and we do not know what fraction of them might bear the
signatures {such as large effective radii or tidal tails} of having
originated as dE nuclei. We propose to use the ACS/WFC to obtain deep
images of 18 such clusters in NGC 5128 and M31, the two nearest rich
globular cluster systems. These globulars are the richest star
clusters that can be found in nature, the biggest of them reaching
10^7 Solar masses, and they are likely to represent the results of
star formation under the densest and most extreme conditions known.
Using the profiles of the clusters including their faint outer
envelopes, we will carry out state-of-the-art dynamical modelling of
their structures, and look for any clear evidence which would indicate
that they are associated with stripped satellites. This study will
build on our previous work with STIS and WFPC2 imaging designed to
study the ‘Fundamental Plane’ of globular clusters. When our new work
is combined with Archival WFPC2, STIS, and ACS material, we will also
be able to construct the definitive mapping of the Fundamental Plane
of globular clusters at its uppermost mass range, and confirm whether
or not the UCD and dE, N objects occupy a different structural
parameter space.

FGS 10202

Resolving OB Binaries in the Carina Nebula, Resuming the Survey

In March 2002 we carried out a small, high-angular resolution survey
of some of the brightest OB stars in the Carina Nebula with FGS1r in
an attempt to resolve binary systems which had thus far evaded
detection by other techniques. Of 23 stars observed, 5 new OB binaries
were discovered with component separations ranging from 0.015"
to0.325". This yield over the spatial domain of FGS1r’s angular
resolution, coupled with published statistics of the incidence of OB
stars in short-period spectroscopic, and long-period visual binaries
suggests that the fraction of binarity or multiplicity among OB stars
is near unity. Our unexpected resolution of the prototype O2 If* star
HD 93129A as a 55 milli-arcsecond double is a case in point that great
care must be exercised when one attemps to establish the IMF and
upper-mass cuttoff at the high-mass end of the HR diagram. We propose
to resume the survey to observe a larger, statistically meaningful
sample of OB stars to establish a firm assessment of multiplicity at
the high-mass end of the IMF in these clusters. We will also
investigate the single-star/binary-star status of several
astrophysically important, individual stars in order to enable a
better understanding of the evolution of high-mass stars.

NIC1/NIC2/NIC3 8793

NICMOS Post-SAA calibration – CR Persistence Part 4

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC2 10173

Infrared Snapshots of 3CR Radio Galaxies

Radio galaxies are an important class of extragalactic objects: they
are one of the most energetic astrophysical phenomena and they provide
an exceptional probe of the evolving Universe, lying typically in high
density regions but well-represented across a wide redshift range. In
earlier Cycles we carried out extensive HST observations of the 3CR
sources in order to acquire a complete and quantitative inventory of
the structure, contents and evolution of these important objects.
Amongst the results, we discovered new optical jets, dust lanes,
face-on disks with optical jets, and revealed point-like nuclei whose
properties support FR-I/BL Lac unified schemes. Here, we propose to
obtain NICMOS infrared images of 3CR sources with z<0.3 as a major
enhancement to an already superb dataset. We aim to deshroud dusty
galaxies, study the underlying host galaxy free from the distorting
effects of dust, locate hidden regions of star formation and establish
the physical characteristics of the dust itself. We will measure
frequency and spectral energy distributions of point-like nuclei,
expected to be stronger and more prevalent in the IR, seek spectral
turnovers in known synchrotron jets and find new jets. We will
strongly test unified AGN schemes and merge these data with existing
X-ray to radio observations. The resulting database will be an
incredibly valuable resource to the astronomical community for years
to come.

NIC2 9875

The Fundamental Plane of Massive Gas-Rich Mergers

We propose deep NICMOS H-band imaging of a carefully selected sample
of 33 luminous, late-stage galactic mergers. This program is part of a
comprehensive investigation of the most luminous mergers in the nearby
universe, the ultraluminous infrared galaxies {ULIGs}. The
high-resolution HST images will complement an extensive set of
ground-based data that include long-slit NIR spectra from a recently
approved Large VLT Programme. This unique dataset will allow us to
derive with unprecedented precision structural -and- kinematic
parameters for a large unbiased sample of objects spanning the entire
ULIG luminosity function. These data will refine the fundamental plane
of massive gas-rich mergers and enable us to answer the following
questions: {1} Do ultraluminous mergers form elliptical galaxies, and
in particular, giant ellipticals? {2} Do ULIGs evolve into optically
bright QSOs? The results from this detailed study of massive mergers
in the local universe will be relevant to understanding galaxy
formation and evolution at earlier epochs, and in particular, the
dusty sub-mm population that accounts for more than half of the star
formation at z > 1.

WFPC2 10071

WFPC2 CYCLE 12 Supplemental Darks Part 3/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTAR 9510: FHST Roll Delay Update (U1,2RD) @ 224/10:02:12Z failed
with Error Box results indicating "2FAILED" for mnemonics QEBSTFG0,
QEBSTFG1, and QEBSTFG2. Prior FHST Mat @ 224/09:16:24Z showed 3-axis
(RSS) error value ~ 9.00 arcsec. Subsequent GS Acquisition (1,2,2) @
224/10:14:46Z was successful. Under investigation.

COMPLETED OPS REQs:

17245-2 Battery 1 Capacity Test (complete thru step 17; High Rate
Terminated/Low Rate begin) @ 223/2012z)

OPS NOTES EXECUTED: None

                          SCHEDULED     SUCCESSFUL    FAILURE TIMES
FGS GSacq              16                       16
FGS REacq               0                         0
FHST Update            22                        21             @224/1002 
HSTAR#9510
LOSS of LOCK

SIGNIFICANT EVENTS:

Battery 1 Capacity Test continues, completed through Step 17, estimate
reach 15.06 Volt discharge cut-off in early am. Continuous ESTR
Engineering Coverage during Battery Capacity Test.

HST VEST testing of Safe Mode Recovery procedures for Inertial Hold
and Zero Gyro scheduled 225/10:00Z – 22:00Z with GDOC, HITT, SE, and
VEST using CCS "D" String. The purpose of this testing is to verify
Safe Mode Recovery procedures in the event of an HST safing event into
Inertial Hold or Zero Gyro.

SpaceRef staff editor.