Status Report

NASA Hubble Space Telescope Daily Report # 3574

By SpaceRef Editor
March 22, 2004
Filed under , ,

HUBBLE SPACE TELESCOPE – Continuing to collect World Class Science

DAILY REPORT # 3574

PERIOD COVERED: DOYs 79-81

OBSERVATIONS SCHEDULED

NIC3 9999

The COSMOS 2-Degree ACS Survey NICMOS Parallels

The COSMOS 2-Degree ACS Survey NICMOS Parallels. This program is a
companion to program 9822.

ACS/HRC 9976

The Parallaxes and Proper Motions of Two Nearby Neutron Stars

We propose to measure the parallax of two nearby neutron stars to the
highest possible level of accuracy, ~.0.5 mas. The primary goal is to
determine the neutron-star radius at infinity with better than 1 km
precision, and therewith obtain a direct constraint on the equation of
state of matter at supra-nuclear density. The required flux and
temperature determinations are easiest for the so-called isolated or
radio-quiet neutron stars because of their apparently completely
thermal spectrum. We argue that the importance of the possible results
warrants a study to the best possible level of the best possible
sources, and request 24 orbits for the two brightest isolated neutron
stars, RX J1856.5-3754 and RX J0720.4-3125. We will also determine
whether the enigmatic RX J0720.4-3125 is an old magnetar or an
accreting source, based on its luminosity and proper motion.

ACS/HRC 9974

Mid-Ultraviolet Spectral Templates for Old Stellar Systems

We propose a three-year program to provide both observational and
theoretical mid-ultraviolet {2300A — 3100A} spectral templates for
interpreting the age and metallicity of globular clusters and
elliptical galaxies from spectra of their integrated light. The mid-UV
is the region most directly influenced by stellar age, and is observed
directly in optical and infrared studies of high-redshift quiescent
systems. The reliability of age and metallicity determinations remains
questionable until non-solar metallicities and abundance ratios are
considered, and stars spanning the color-magnitude diagram are
included, as we propose here. With archival HST STIS spectra we have
improved the list of mid-UV atomic line parameters, then calculated
spectra from first principles which match observed spectra of standard
stars up to one- fourth solar metallicity. We will extend both
observations and calculations to stars of solar metallicity and
beyond, and to those in short-lived stages hotter than the
main-sequence turnoff, stars not currently well-represented in
empirical libraries. The necessary line-list improvements will come
from new high-resolution mid-UV spectra of nine field stars. A key
application of the results of this program will be to the old systems
now being discovered as `Extremely Red Objects’ at high redshifts.
Reliable age-dating of these places constraints on the epoch when
large structures first formed in the universe.

FGS 9972

Calibrating the Mass-Luminosity Relation at the End of the Main
Sequence

We propose to use HST-FGS1R to calibrate the mass-luminosity relation
{MLR} for stars less massive than 0.2 Msun, with special emphasis on
objects near the stellar/brown dwarf border. Our goals are to
determine M_V values to 0.05 magnitude, masses to 5 than double the
number of objects with masses determined to be less than 0.20 Msun.
This program uses the combination of HST-FGS3/FGS1R at optical
wavelengths and ground-based infrared interferometry to examine
nearby, subarcsecond binary systems. As a result of these
measurements, we are deriving high quality luminosities and masses for
the components in the observed systems, and characterizing their
spectral energy distributions from 0.5 to 2.2 Mum. Several of the
objects included have M < 0.1 Msun, placing them at the very end of
the stellar main sequence. Three of the targets are brown dwarf
candidates, including the current low mass record holder, GJ 1245C,
with a mass of 0.062 +/- 0.004 Msun. The payoff of this proposal is
high because all 10 of the systems selected have already been resolved
with HST- FGS3/FGS1R during Cycles 5–10 and contain most of the
reddest objects for which masses can be determined.

ACS/HRC/WFC 9919

The Morphological, Photometric, and Spectroscopic Properties of
Intermediate Redshift Cluster Galaxies:

New and fundamental constraints on the evolutionary state of high
redshift clusters will be made by obtaining deep, multiband images
{SDSS r, i, z} over the central 1.5 Mpc regions of seven distant
clusters in the range 0.76 < z < 1.27. The ACS data will allow us to
{1} definitively establish the morphological composition and star
formation rates as functions of clustercentric radius, local density,
x-ray luminosity {obtained from accompanying Chandra, and XMM data},
{2} explore the relationship between substructure, kinematics, and
morphology, {3} strongly constrain the galaxy merger frequency and the
origins of elliptical and S0 galaxies, {4} measure the mass
distribution independently from the light {via gravitational lensing}
enabling comparisons with kinematically derived masses, and {5} study
the evolution of the structure of the brightest cluster members. The
clusters selected for this program already have extensive
spectroscopic observations and NIR imaging is either in hand or
underway from approved ground based programs. To date, the lower part
of this redshift range has only been marginally studied with HST. Our
sample includes the two most distant, spectroscopically confirmed
superclusters and will significantly increase the baseline over which
evolutionary effects can be studied. The data will also be used to
identify very high-z galaxies via their unique spectral properties.

ACS/WFC 9892

H-alpha Snapshots of Nearby Galaxies observed in F300W: Quantifying
Star Formation in a Dusty Universe

Previous studies of nearby galaxies show large discrepancies between
different star formation {SF} indicators on large {>100 pc, or even
global} scales: the strikingly complex interplay of young stars, dust
and ionized gas are the primary cause of this variance. The few
galaxies in the HST Archive with both WFPC2 H-alpha and mid-UV {F255W
or F300W} imaging show this complex geometry extending down to <10 pc
scales. We propose a SNAPshot survey in the ACS/WFC H-alpha filter of
48 galaxies of all Hubble types, that are nearby but beyond the Local
Group, and that were previously imaged with WFPC2 in the mid-UV and in
F814W. We aim to provide a benchmark for understanding the SF
processes in both normal and star-bursting galaxies, at spatial
resolutions unattainable from the ground for a large and varied galaxy
sample. These data can be applied to a wide range of astrophysical
problems and will, therefore, be made public immediately. Our science
goals are to: {1} spatially resolve the dust clouds and filaments
which strongly affect mid-UV and H-alpha derived SF rates, {2} test
how the large-scale correlation between H-alpha and mid-UV flux breaks
down on pc scales, and {3} model the propagation of star formation by
comparing the SF over time scales of ~100 Myr {via mid-UV} and ~5 Myr
{via H-alpha}. This will {4} significantly improve our insight into,
and calibration of SF in UV-bright galaxies at high z, and into the
cosmic SF history.

FGS 9879

An Astrometric Calibration of the Cepheid Period-Luminosity Relation

We propose to measure the parallaxes of 10 Galactic Cepheid variables.
When these parallaxes {with 1-sigma precisions of 10% or better} are
added to our recent HST FGS parallax determination of delta Cep
{Benedict et al 2002}, we anticipate determining the Period-Luminosity
relation zero point with a 0.03 mag precision. In addition to
permitting the test of assumptions that enter into other Cepheid
distance determination techniques, this calibration will reintroduce
Galactic Cepheids as a fundamental step in the extragalactic distance
scale ladder. A Period-Luminosity relation derived from solar
metallicity Cepheids can be applied directly to extragalactic solar
metallicity Cepheids, removing the need to bridge with the Large
Magellanic Cloud and its associated metallicity complications.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7<z<1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial–but poorly observed–redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

ACS/HRC 9851

Host Galaxies of Reverberation-Mapped AGNs

We propose to obtain unsaturated ACS high-resolution images of all
reverberation-mapped active galactic nuclei in order to remove the
point-like nuclear light from each image, thus yielding a
"nucleus-free" image of the host galaxy. This will allow investigation
of host-galaxy properties: our particular interest is determination of
the host-galaxy starlight contribution to the reverberation mapping
observations, which is necessary for accurate determination of the
relationship between the AGN continuum flux and the size of the broad
Balmer-line emitting region of AGNs. Because this relationship is used
to estimate black-hole masses of large samples of distant AGNs,
correct determination of the slope of this relationship is critically
important.

ACS/WFC/WFPC2 9822

The COSMOS 2-Degree ACS Survey

We will undertake a 2 square degree imaging survey {Cosmic Evolution
Survey — COSMOS} with ACS in the I {F814W} band of the VIMOS
equatorial field. This wide field survey is essential to understand
the interplay between Large Scale Structure {LSS} evolution and the
formation of galaxies, dark matter and AGNs and is the one region of
parameter space completely unexplored at present by HST. The
equatorial field was selected for its accessibility to all
ground-based telescopes and low IR background and because it will
eventually contain ~100, 000 galaxy spectra from the VLT-VIMOS
instrument. The imaging will detect over 2 million objects with I> 27
mag {AB, 10 sigma}, over 35, 000 Lyman Break Galaxies {LBGs} and
extremely red galaxies out to z ~ 5. COSMOS is the only HST project
specifically designed to probe the formation and evolution of
structures ranging from galaxies up to Coma-size clusters in the epoch
of peak galaxy, AGN, star and cluster formation {z ~0.5 to 3}. The
size of the largest structures necessitate the 2 degree field. Our
team is committed to the assembly of several public ancillary datasets
including the optical spectra, deep XMM and VLA imaging, ground-based
optical/IR imaging, UV imaging from GALEX and IR data from SIRTF.
Combining the full-spectrum multiwavelength imaging and spectroscopic
coverage with ACS sub-kpc resolution, COSMOS will be Hubble’s ultimate
legacy for understanding the evolution of both the visible and dark
universe.

WFPC2 9817

The mass of the Milky Way: orbits for Leo I and Leo II

Constraining the mass of the galaxy at large radii remains a difficult
problem. Available data are still rather scarce, and orbits of even a
few objects at large radii can have a large impact. We propose to
obtain proper motions for the two satellites Leo I and Leo II, which
orbit the Galaxy at about 200kpc. Together with the radial velocities
of these galaxies, which are well-known, the proper motions allow
space velocities to be constructed: these can remove significant
uncertainty in the Galactic mass models, and in particular settle the
vexed question whether Leo I is gravitationally bound to the Galaxy or
not.

ACS/WFC 9811

Establishing the Metallicity Distribution in Normal Giant Ellipticals

NGC 3377 and 3379, the Leo Group ellipticals at d=11 Mpc, are the
nearest E galaxies commonly regarded to be structurally "normal", and
as such, they are keystone objects for understanding the evolution and
early star formation history of large ellipticals. The ACS/WFC camera
now gives us the ability to obtain the metallicity distribution
function {MDF} of their stellar population by direct resolution and
photometry of their halo stars. To do this, we will follow the same
highly successful techniques we have previously used for NGC 5128 with
WFPC2 {V, I} imaging: the {V-I} colors of the brightest red-giant
stars are highly sensitive to metallicity, and their locations in the
color-magnitude diagram can be used for direct construction of the
MDF. This will be a major step forward to understanding the formation
history of these cosmologically dominant galaxies.

STIS 9786

The Next Generation Spectral Library

We propose to continue the Cycle 10 snapshot program to produce a Next
Generation Spectral Library of 600 stars for use in modeling the
integrated light of galaxies and clusters. This program is using the
low dispersion UV and optical gratings of STIS. The library will be
roughly equally divided among four metallicities, very low {[Fe/H] lt
-1.5}, low {[Fe/H] -1.5 to -0.5}, near-solar {[Fe/H] -0.3 to 0.1}, and
super-solar {[Fe/H] gt 0.2}, well-sampling the entire HR-diagram in
each bin. Such a library will surpass all extant compilations and have
lasting archival value, well into the Next Generation Space Telescope
era. Because of the universal utility and community-broad nature of
this venture, we waive the entire proprietary period.

ACS/HRC/WFC 9781

Galaxy Evolution in Action : The Detailed Morphology of Post-Starburst
Galaxy

If galaxies evolve morphologically, then some should be in transition
between late and early types. One proposed evolutionary mechanism is a
galaxy-galaxy merger, but evolved merger products are difficult to
find. Fortunately, spectroscopic surveys have now uncovered large
numbers of E+A galaxies, a class of objects whose post-starburst
spectra, current lack of HI gas, and pressure-supported kinematics
suggest that they are the missing panel that connects the "Toomre
sequence" of merging spirals with normal ellipticals and S0s. Our
first HST observations of five of these galaxies are intriguing. We
find a considerable range of tidally disturbed morphologies, an "E+A"
fundamental plane, significant differences among the color gradients
within 1 kpc {~0.8”}, and populations of bright, blue globular
clusters. These initial results are difficult to interpret, however,
because they are drawn from a small sample of galaxies whose very blue
overall colors may have selected a particular evolutionary path of
E+As. Here we propose for ACS imaging of the remaining 15 E+As from
the Las Campanas Redshift Survey to probe the full range of E+A
properties. The proposed observations will allow us to 1} determine
what fraction of the interactions that lead to E+As destroy all
disk-like structures {and therefore necessarily lead to elliptical
formation}, 2} measure the inner color gradients and constrain the
spatial distribution of stars produced as gas sinks to the center
during a merger, and 3} determine whether these interactions produce
globular clusters in the required numbers to account for the increased
specific frequency of clusters in early-type galaxies.

ACS/WFC 9744

HST Imaging of Gravitational Lenses

Gravitational lenses offer unique opportunities to study cosmology,
dark matter, galactic structure, galaxy evolution and quasar host
galaxies. They are also the only sample of galaxies selected based on
their mass rather than their luminosity or surface brightness. While
gravitational lenses can be discovered with ground-based optical and
radio observations, converting them into astrophysical tools requires
HST. We will obtain ACS/WFC V and I images and NICMOS H images of 21
new lenses never observed by HST and NICMOS H images of 16 lenses
never observed by HST in the IR. As in previous cycles, we request
that the data be made public immediately.

STIS 9633

STIS parallel archive proposal – Nearby Galaxies – Imaging and
Spectroscopy

Using parallel opportunities with STIS which were not allocated by the
TAC, we propose to obtain deep STIS imagery with both the Clear
{50CCD} and Long-Pass {F28X50LP} filters in order to make
color-magnitude diagrams and luminosity functions for nearby galaxies.
For local group galaxies, we also include G750L slitless spectroscopy
to search for e.g., Carbon stars, late M giants and S-type stars. This
survey will be useful to study the star formation histories, chemical
evolution, and distances to these galaxies. These data will be placed
immediately into the Hubble Data Archive.

ACS/WFC 9575

Default {Archival} Pure Parallel Program.

The Advanced Camera for Surveys (WFC) was used to test ACS pure
parallels in POMS.

ACS/WFPC2 9488

Cosmic Shear – with ACS Pure Parallel Observations

The ACS, with greater sensitivity and sky coverage, will extend our
ability to measure the weak gravitational lensing of galaxy images
caused by the large scale distribution of dark matter. We propose to
use the ACS in pure parallel {non- proprietary} mode, following the
guidelines of the ACS Default Pure Parallel Program. Using the HST
Medium Deep Survey WFPC2 database we have measured cosmic shear at
arc-min angular scales. The MDS image parameters, in particular the
galaxy orientations and axis ratios, are such that any residual
corrections due to errors in the PSF or jitter are much smaller than
the measured signal. This situation is in stark contrast with
ground-based observations. We have also developed a statistical
analysis procedure to derive unbiased estimates of cosmic shear from a
large number of fields, each of which has a very small number of
galaxies. We have therefore set the stage for measurements with the
ACS at fainter apparent magnitudes and smaller, 10 arc-second scales
corresponding to larger cosmological distances. We will adapt existing
MDS WFPC2 maximum likelihood galaxy image analysis algorithms to work
with the ACS. The analysis would also yield an online database similar
to that in archive.stsci.edu/mds/

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration – CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

STIS/CCD 10085

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

WFPC2 10084

WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

WFPC2 10070

WFPC2 CYCLE 12 Supplemental Darks Part 2/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.

ACS/HRC/WFC 10059

CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.

ACS/HRC 10050

ACS Earth Flats

High signal sky flats will be obtained by observing the bright Earth
with the HRC and WFC. These observations will be used to verify the
accuracy of the flats currently used by the pipeline and will provide
a comparison with flats derived via other techniques: L-flats from
stellar observations, sky flats from stacked GO observations, and
internal flats using the calibration lamps. Weekly coronographic
monitoring is required to assess the changing position of the spots.

STIS/CCD 10028

CCD Full-Field Sensitivity Monitor C1

Measure a photometric standard star field in Omega Cen in 50CCD mode
every few months to monitor CCD sensitivity over the whole field of
view. Keep the spacecraft orientation within a suitable range {+/- 5
degrees} to keep the same stars in the same part of the CCD for every
measurement. The second observation is performed at an orientation
rotated by 180 degrees with respect to the other observations to study
the effect of CTE {to first order}. This test will give a direct
transformation of the 50CCD magnitudes to the Johnson-Cousins system
for red sources. These transformations should be accurate to 1%. The
stability of these transformations will be measured to the sub-percent
level. These observations also provide a check of the astrometric and
PSF stability of the instrument over its full field of view.

STIS/CCD 10020

CCD Bias Monitor – Part 2

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1,
and 1×1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

STIS/CCD 10018

CCD Dark Monitor-Part 2

Monitor the darks for the STIS CCD.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.)

HSTAR 9359: GS Acquisition (2,3,2) @ 080/12:22:11Z failed due to SRLE
on FGS 2 following a Type 2 slew @ 080/12:15:01Z. No Full Maneuver
were scheduled between the slew and the GS Acquisition. Search radius
of GS Acquisition was 31 arcsec. FHST Map @ 080/13:03Z showed vehicle
errors of -8.792, 30.595, and -8.445. ARU/PRT was generated from this
Map and was uplinked @ 080/13:32Z. Subsequent GS Reacquisition @
080/13:58:07Z was successful.

COMPLETED OPS REQs:

17099 – ARU/PRT @ 080/1334z

OPS NOTES EXECUTED:

1210-0 – Change Limits MAMA2 Threshold Voltage @ 081/0125z

                        SCHEDULED     SUCCESSFUL    FAILURE TIMES
FGS GSacq            23                        22             080/1232z 
(HSTAR 9359)
FGS REacq            21                        21
FHST Update          49                        49
LOSS of LOCK

SIGNIFICANT EVENTS:

GS Acquisition (2,3,2) @ 080/12:22Z failed due to SRLE. The previous
Roll Delay Update was successful. Subsequent Map @ 080/13:02Z
displayed errors of -8.79, 30.59, and -8.44 for V1, V2, and V3
respectively. FOT coordinated and uplinked ARU/PRT @ 080/13:34Z (OR
17099) to save the pending GS Reacquisition (2,3,3) @ 080/13:52Z (with
a search radius limit of 15 arcsec). The GS Reacquisition @
080/13:52Z was successful and science was restored. See HSTAR 9359.

SpaceRef staff editor.