Status Report

NASA Hubble Space Telescope Daily Report # 3502

By SpaceRef Editor
December 8, 2003
Filed under , ,





ACS 9984

Cosmic Shear With ACS Pure Parallels

Small distortions in the shapes of background galaxies by foreground
mass provide a powerful method of directly measuring the amount and
distribution of dark matter. Several groups have recently detected
this weak lensing by large-scale structure, also called cosmic shear.
The high resolution and sensitivity of HST/ACS provide a unique
opportunity to measure cosmic shear accurately on small scales. Using
260 parallel orbits in Sloan textiti {F775W} we will measure for the
first time: beginlistosetlength sep0cm setlengthemsep0cm setlength
opsep0cm em the cosmic shear variance on scales <0.7 arcmin, em the
skewness of the shear distribution, and em the magnification effect.
endlist Our measurements will determine the amplitude of the mass
power spectrum sigma_8Omega_m^0.5, with signal-to-noise {s/n} ~ 20,
and the mass density Omega_m with s/n=4. They will be done at small
angular scales where non-linear effects dominate the power spectrum,
providing a test of the gravitational instability paradigm for
structure formation. Measurements on these scales are not possible
from the ground, because of the systematic effects induced by PSF
smearing from seeing. Having many independent lines of sight reduces
the uncertainty due to cosmic variance, making parallel observations


CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.


The Grism-ACS Program for Extragalactic Science {GRAPES}

We propose an ACS grism spectroscopic survey with a wide component and
an ultradeep single ACS field. The wide component covers the
well-imaged GOODS Chandra Deep Field south and the deepest field will
be the Ultra Deep field to be observed in cycles 11 and 12. The Grism
ACS Program for Extra-galactic Science {GRAPES} will: {1} Probe the
reionization epoch by robustly determining the luminosity function of
Lyman-alpha emitters, Lyman break galaxies and low luminosity AGNs at
z~6, and thus the sources of ionizing photons at the end of the "dark
ages". A similar census of ionizing photon sources at z=4-6 needed to
maintain the ionized state of the IGM will also be achieved. {2} Study
galaxy formation and evolution by finding galaxies in a contiguous
redshift range between z=4-7 and evolution of black holes through a
census of low-luminosity AGNs. {3} Study star-formation and galaxy
assembly at its peak at z=1-2 by identifying star-forming galaxies by
their emission lines, old galaxies by the 4000 AA break and any
combination of new and old populations showing both lines and breaks.
{4} Allow the deepest unbiased spectroscopy yet, for identification of
objects to I=27. {5} Enhance the value of multiwavelength data in the
UDF and GOODS field to the astronomical community.

ACS/WFC 10006

Black Hole X-ray Novae in M31

During A01-3 we found 22 Black Hole X-ray Novae {BHXN} in M31 using
Chandra, and with HST {WFPC2} found two optical counterparts. Our
results suggest either a surprisingly high ratio of BH to NS binaries,
or a surprisingly high duty cycle for BHXN. We propose to continue
this program, with the goals of understanding the relative number of
BH vs. NS X-ray binaries in the M31 bulge, and determining the orbital
period distribution and duty cycles of these BHXN. Continued
observations can determine the duty cycle. The new ACS will allow us
to go 2 mags deeper than the WFPC2, and could triple the number of
optical counterparts and therefore orbital period estimates. M31 is
the only galaxy near enough to allow this extragalactic survey for

ACS/WFC 10055

ACS Polarization Calibration

This proposal aims to address several specific issues for the
polarization calibration: {1} variations in calibration with position
on the detector {field dependence}, {2} dependence on telescope
roll-angle relative to the target, {3} orientation of the polarizer
axes, and {4} geometric distortion contributed by the polarizers.


The local Hubble flow and the density field within 6 Mpc

Great progress has been made recently in accurate distance
measurements of nearby galaxies beyond the Local Group based on the
luminosity of the tip of the red giant branch {TRGB}. Over the last
three years, snapshot surveys with HST have provided us with the TRGB
distances for more than a hundred nearby galaxies obtained with an
accuracy of about 10%. The local velocity field within 5 Mpc exhibits
a significant anisotropy which disagrees with a spherical
Virgo-centric flow. The local Hubble flow is very cold, with 1-D rms
deviations of ~30 km/s. Cosmological simulations with Cold Dark Matter
can only realize such low dispersions with a combination of a low mean
density of matter and a substantial component with negative pressure.
There may be a constraint on the equation of state w=-p/rho. Our
observations will concentrate on 116 galaxies whose expected distances
lie within 4 – 6 Mpc, allowing us to trace a Dark Matter distribution
in the Local Volume with twice the information currently available.
The program is a good one for SNAP mode because the order and rate
that the observations are made are not very important, as long as
there is good completion over several years.

FGS 9961

The Masses and Luminosities of Population II Stars

Very little is currently known concerning the mass-luminosity relation
{MLR} of Population II stars. However, with the advent of the
Hipparcos Catalogue, improved distances to many spectroscopic binaries
known to be Pop II systems are now available. After surveying the
literature and making reasonable estimates of the secondary masses, we
find 13 systems whose minimum separation should be larger than the
resolution limit of FGS1. Because of the expected magnitude
differences and separations, it is not possible to resolve the systems
from the ground. We therefore propose FGS observations of the sample.
In combination with the known spectroscopic orbits and Hipparcos
distances, these observations will yield up to 26 precise stellar mass
determinations of metal-poor stars, if all systems are resolved and
the relative orbits are determined. A combination of FGS data and
ground-based observations will lead to component luminosities and
effective temperatures. This program will allow for a significantly
better understanding of the Pop II main sequence, which in turn will
lead to better ages and distances of the galactic globular clusters,
and a Pop II MLR will be constructed for the first time.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7<z<1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial–but poorly observed–redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.

NIC2 9801

Are OH/IR Stars the Youngest post-AGB stars? A NICMOS Imaging Survey

Essentially all well-characterized preplanetary nebulae {PPNe}–
objects in transition between the AGB and planetary nebula
evolutionary phases – are bipolar, whereas the mass-loss envelopes of
AGB stars are strikingly spherical. In order to understand the
processes leading to bipolar mass-ejection, we need to know at what
stage of stellar evolution does bipolarity in the mass-loss first
manifest itself. We have recently hypothesized that most OH/IR stars
{evolved mass- losing stars with OH maser emission} are very young
PPNe. We are conducting a multiwavelength survey program of imaging
and spectroscopic observations of such objects, using a large,
morphologically unbiased sample selected using IRAS 12-to-25 micron
colors. Our ongoing HST/SNAP imaging survey of the optically bright
half of this sample with WFPC2 and ACS is highly successful: 19/32
objects observed are extended with bipolar/multipolar shapes
{remaining objects are unresolved}. Slightly more than 50% of our
sample are optically too faint or undetected but have strong near-IR
counterparts — we therefore propose a NICMOS SNAPshot imaging survey
of these optically-faint OH/IR stars. These observations are crucial
for determining how and when the bipolar geometry asserts itself. The
results from our NICMOS survey {together with the WFPC2/ACS survey}
will allow us to draw general conclusions about the onset of bipolar
mass-ejection during late stellar evolution. Our complementary program
of interferometric mapping of the OH maser emission in our sources is
yielding kinematic information with spatial resolution comparable to
that in the HST images. The HST/radio data will provide crucial input
for theories of post-AGB stellar evolution. In addition, these data
will also indicate whether the multiple concentric rings, "searchlight
beams”, and truncated equatorial disks recently discovered with HST
in a few PPNe, are common or rare phenomena.

NIC2 9875

The Fundamental Plane of Massive Gas-Rich Mergers

We propose deep NICMOS H-band imaging of a carefully selected sample
of 33 luminous, late-stage galactic mergers. This program is part of a
comprehensive investigation of the most luminous mergers in the nearby
universe, the ultraluminous infrared galaxies {ULIGs}. The
high-resolution HST images will complement an extensive set of
ground-based data that include long-slit NIR spectra from a recently
approved Large VLT Programme. This unique dataset will allow us to
derive with unprecedented precision structural -and- kinematic
parameters for a large unbiased sample of objects spanning the entire
ULIG luminosity function. These data will refine the fundamental plane
of massive gas-rich mergers and enable us to answer the following
questions: {1} Do ultraluminous mergers form elliptical galaxies, and
in particular, giant ellipticals? {2} Do ULIGs evolve into optically
bright QSOs? The results from this detailed study of massive mergers
in the local universe will be relevant to understanding galaxy
formation and evolution at earlier epochs, and in particular, the
dusty sub-mm population that accounts for more than half of the star
formation at z > 1.


NICMOS Post-SAA calibration – CR Persistence Part 1.

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark.

STIS 9633

STIS parallel archive proposal – Nearby Galaxies – Imaging and

Using parallel opportunities with STIS which were not allocated by the
TAC, we propose to obtain deep STIS imagery with both the Clear
{50CCD} and Long-Pass {F28X50LP} filters in order to make
color-magnitude diagrams and luminosity functions for nearby galaxies.
For local group galaxies, we also include G750L slitless spectroscopy
to search for e.g., Carbon stars, late M giants and S-type stars. This
survey will be useful to study the star formation histories, chemical
evolution, and distances to these galaxies. These data will be placed
immediately into the Hubble Data Archive.


Ozone, Condensates, and Dust in the Martian Atmosphere

We propose to utilize the unique UV capabilities of STIS and ACS/HRC
in order to study the spatial and seasonal variations in ozone,
condensates, and dust in the Martian atmosphere. The data obtained
will be critical in addressing recent breakthroughs in understanding
the basic radiative, transport, and microphysical processes that
provide for both long-term and short-term balance within the global
Mars climate system. The proposal includes both Cycle 11 & 12
observations in order to span the classic dust storm season on Mars
and provide the first good opportunity for HST to observe a dusty
atmosphere on the planet. The UV observations will complement visible
and IR observations that will be made during the Mars Global Surveyor
Extended Mission and will provide support for the future UV
observations of MARCI on the 2005 Mars Reconnaissance Orbiter.

STIS/CCD 10000

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

STIS/CCD 10017

CCD Dark Monitor-Part 1

Monitor the darks for the STIS CCD.

STIS/CCD 10019

CCD Bias Monitor – Part 1

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1,
and 1×1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.

WFPC2 10069

WFPC2 CYCLE 12 Supplemental Darks, Part 1/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot

WFPC2 10075

WFPC2 CYCLE 12 Intflat and Viflat Sweeps and Filter Rotation Anomaly

Using intflat observations, this WFPC2 proposal is designed to monitor
the pixel-to-pixel flatfield response and provide a linearity check.
The intflat sequences, to be done once during the year, are similar to
those from the Cycle 11 program 9597. The images will provide a backup
database in the event of complete failure of the visflat lamp as well
as allow monitoring of the gain ratios. The sweep is a complete set of
internal flats, cycling through both shutter blades and both gains.
The linearity test consists of a series of intflats in F555W, in each
gain and each shutter. As in Cycle 11, we plan to continue to take
extra visflat, intflat, and earthflat exposures to test the
repeatability of filter wheel motions.

WFPC2 9709

POMS Test Proposal: WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

WFPC2 9712

Pure Parallel Near-UV Observations with WFPC2 within High-Latitude ACS
Survey Fields

In anticipation of the allocation of ACS high-latitude imaging
survey{s}, we request a modification of the default pure parallel
program for those WFPC2 parallels that fall within the ACS survey
field. Rather than duplicate the red bands which will be done much
better with ACS, we propose to observe in the near-ultraviolet F300W
filter. These data will enable study of the rest-frame ultraviolet
morphology of galaxies at 0<z<1. We will determine the morphological
k-correction, and the location of star formation within galaxies,
using a sample that is likely to be nearly complete with
multi-wavelength photometry and spectroscopic redshifts. The results
can be used to interpret observations of higher redshift galaxies by


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be

HSTAR 9225: GS Acquisition (2,3,2) @ 337/21:25:39Z resulted in FL
backup on FGS 2 only, QF2STOPF and F2SSCEA flags were set @
337/21:28:42Z with QSTOP flag @ 337/21:28:46Z and FSUBLOL @
337/21:30:41Z. No other FGS flags were set. Vehicle attitude was not
bad, first FM update @ 337/21:07:24Z showed errors of -30.601,
-34.472, -5.606. FHST Map @ 337/22:05:00Z showed errors of -1.392,
-3.836, 3.681. Under investigation.

HSTAR 9226: During AOS, GS Acquisition (1,3,1) @ 338/04:03:41Z failed
to RGA only, QDVEFGS1 was flagging out at 153.372. GS Reacquisition @
338/05:39:43z also failed to RGA only after reaching FL on both FGSs.
Under investigation.


  • 17063-2 Off-line +DD and +CC SPAs @337/1555z
  • 17065-0 GYRO High Mode BIAS offset table update @337/1631z


  • 1176 486 Software Memory Dump @338/0138z
  • 1177 Change Limits MAMA2 Threshold Voltage @338/0210z
  • 1160-2 Default Configuration TMDIAGS @337/1616z

                              SCHEDULED     SUCCESSFUL    FAILURE TIMES
GSacq                  11                       10              338/0413z 
(HSTAR 9226)
REacq                  4                          3               338/0540z 
(HSTAR 9226)
FHST Update                23                        23


Successfully completed implementation of Reduction in Full-Charge
Current, Off-lining of +DD and +CC SPAs @ 337/15:48Z (OP 17063-2 with
attached scripts IP-046 and IP-048). EPS SEs monitored power system
performance for two orbits following the uplink and verified nominal
power system performance in the new configuration. Upon Trickle
Charge initiation, the +DD and +CC SPA Trim Relays remained open and
other Trim Relays were commanded open in the proper order. There were
10 minutes of Trickle Charge for the first orbit and 11 minutes of
Trickle Charge for the second orbit. EPS SEs will continue close
monitoring of the power system performance in the next several weeks
to asses how this configuration changes has affected battery capacity.

SpaceRef staff editor.