NASA Hubble Space Telescope Daily Report # 3487
HUBBLE SPACE TELESCOPE
DAILY REPORT # 3487
PERIOD COVERED: DOY 314
OBSERVATIONS SCHEDULED
10033
MAMA Sensitivity and Focus Monitor Cycle 12
Monitor sensitivity of each MAMA grating mode to detect any change due
to contamination or other causes. Also monitor the STIS focus in a
spectroscopic and an imaging mode.
ACS 9984
Cosmic Shear With ACS Pure Parallels
Small distortions in the shapes of background galaxies by foreground
mass provide a powerful method of directly measuring the amount and
distribution of dark matter. Several groups have recently detected
this weak lensing by large-scale structure, also called cosmic shear.
The high resolution and sensitivity of HST/ACS provide a unique
opportunity to measure cosmic shear accurately on small scales. Using
260 parallel orbits in Sloan textiti {F775W} we will measure for the
first time: beginlistosetlength sep0cm setlengthemsep0cm setlength
opsep0cm em the cosmic shear variance on scales <0.7 arcmin, em the
skewness of the shear distribution, and em the magnification effect.
endlist Our measurements will determine the amplitude of the mass
power spectrum sigma_8Omega_m^0.5, with signal-to-noise {s/n} ~ 20,
and the mass density Omega_m with s/n=4. They will be done at small
angular scales where non-linear effects dominate the power spectrum,
providing a test of the gravitational instability paradigm for
structure formation. Measurements on these scales are not possible
from the ground, because of the systematic effects induced by PSF
smearing from seeing. Having many independent lines of sight reduces
the uncertainty due to cosmic variance, making parallel observations
ideal.
ACS/HRC/WFC 10042
CCD Daily Monitor
This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.
ACS/HRC/WFC 10044
ACS internal CTE monitor
The charge transfer efficiency {CTE} of the ACS CCD detectors will
decline as damage due to on-orbit radiation exposure accumulates. This
degradation will be closely monitored at regular intervals, because it
is likely to determine the useful lifetime of the CCDs. All the data
for this program is acquired using internal targets {lamps} only, so
all of the exposures should be taken during Earth occultation time
{but not during SAA passages}. This program emulates the ACS
pre-flight ground calibration and post-launch SMOV testing {program
8948}, so that results from each epoch can be directly compared.
Extended Pixel Edge Response {EPER} and First Pixel Response {FPR}
data will be obtained over a range of signal levels for both the Wide
Field Channel {WFC}, and the High Resolution Channel {HRC}.
ACS/WFC 9701
ACS Default {Archival} Pure Parallel Program II
The proposal is designed to test ACS pure parallels in POMS.
ACS/WFC/HRC 9905
The Host Galaxies of Type II Quasars
Type II quasars are the luminous analogues of Type II Seyferts; the
central engines are presumably heavily obscured by dust. We have
defined a sample of 9 highly luminous Type II quasar candidates with
0.24 < z < 0.40 from the spectroscopic data of the Sloan Digital Sky
Survey, which have high equivalent width, narrow emission-line spectra
characteristic of a nonthermal continuum. We estimate that the
obscured AGN in these objects have optical luminosities of order
10^{12} solar luminosities. We propose to image this sample in
rest-frame U, B and V, to determine the morphology and color of the
host galaxies, and look for recent star formation. We will also probe
the extended environments of these objects, to determine whether they
are undergoing interactions with close companions, and whether they
live in appreciably clustered environments.
FGS 10010
Long Term Monitoring of FGS1r in Position Mode
It is known from our experience with FGS3, and later with FGS1r, that
an FGS on orbit experiences long term evolution, presumably due to
disorption of water from the instrument’s graphite epoxy composits.
This manifests principly as a change in the plate scale and
secondarily as a change in the geometric distortions. These effects
are well modeled by adjustments to the rhoA and kA parameters which
are used to transform the star selector servo angles into FGS {x, y}
detector space coordinates. By observing the relative positions of
selected stars in a standard cluster at a fixed telescope pointing and
orientation, the evolution of rhoA and kA can be monitored and
calibrated to preserve the astrometric performance of FGS1r.
FGS 9879
An Astrometric Calibration of the Cepheid Period-Luminosity Relation
We propose to measure the parallaxes of 10 Galactic Cepheid variables.
There is no other instrument on or off the earth that can consistently
deliver HST FGS level of precision for critical parallaxes. When these
parallaxes {with 1-sigma precisions of 10% or better} are added to our
recent HST FGS parallax determination of delta Cep {Benedict et al
2002}, we anticipate determining the Period-Luminosity relation zero
point with a 0.03 mag precision. In addition to permitting the test of
assumptions that enter into other Cepheid distance determination
techniques, this calibration will reintroduce Galactic Cepheids as a
fundamental step in the extragalactic distance scale ladder. A
Period-Luminosity relation derived from solar metallicity Cepheids can
be applied directly to extragalactic solar metallicity Cepheids,
removing the need to bridge with the Large Magellanic Cloud and its
associated metallicity complications.
NIC/NIC3 9865
The NICMOS Parallel Observing Program
We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at
0.7<z<1.9, which provides an excellent measure of current star
formation rate. We will also detect star-forming and active galaxies
in other redshift ranges using other emission lines. The grism
observations will produce by far the best available Halpha luminosity
functions over the crucial–but poorly observed–redshift range where
galaxies appear to have assembled most of their stellar mass. This key
process of galaxy evolution needs to be studied with IR data; we found
that observations at shorter wavelengths appear to have missed a large
fraction of the star-formation in galaxies, due to dust reddening. We
will also obtain deep F110W and F160W images, to examine the space
densities and morphologies of faint red galaxies. In addition to
carrying out the public parallels, we will make the fully reduced and
calibrated images and spectra available on-line, with some
ground-based data for the deepest parallel fields included.
NIC1/NIC2/NIC3 8792
NICMOS Post-SAA calibration – CR Persistence Part 3
A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.
NIC3 9735
ACS, NICMOS, and STIS Observations of Three Ongoing Mergers
We propose to make ACS {U, B, V, I, H_alpha}, NICMOS {J, H, K}, and
STIS {long-slit H_alpha} observations of NGC 520, NGC 2623, and NGC
3256, three merging galaxies in the middle of the Toomre Sequence and
currently in the throes of violent relaxation. Two of these {NGC 2623
and NGC 3256} are the most IR luminous galaxies in the sequence.
Hence, these ongoing mergers are ideal candidates for studying the
triggering mechanism responsible for the formation of stars and star
clusters. The ACS observations will allow us to age date the star
clusters, and reliably distinguish clusters from stars based on their
apparent sizes. They will also be used in conjunction with
ground-based measurements of the stellar velocity dispersion to
determine dynamical masses of the clusters and hence address the
question of whether the IMF is truncated. The NICMOS observations will
allow us to penetrate the dust and answer several fundamental
questions such as: What fraction of the young clusters are hidden by
dust? How do these clusters form and evolve? The STIS observations
will allow us to study the kinematics of the young cluster system and
measure the pressure and shock properties which may be triggering the
formation of the clusters. A better understanding of how mergers form
tremendous numbers of clusters and stars in the local universe will
help shed light on processes that were crucial during galaxy assembly
in the high-z universe.
NICMOS 9636
Cycle 11 NICMOS dark current, shading profile, and read noise
monitoring program
The purpose of this proposal is to monitor the dark current, read
noise, and shading profile for all three NICMOS detectors throughout
the duration of Cycle 11. This proposal is a continuation of PID 9321
which covers the period between the end of SMOV3B and the onset of
Cycle 11.
STIS 9786
The Next Generation Spectral Library
We propose to continue the Cycle 10 snapshot program to produce a Next
Generation Spectral Library of 600 stars for use in modeling the
integrated light of galaxies and clusters. This program is using the
low dispersion UV and optical gratings of STIS. The library will be
roughly equally divided among four metallicities, very low {[Fe/H] lt
-1.5}, low {[Fe/H] -1.5 to -0.5}, near-solar {[Fe/H] -0.3 to 0.1}, and
super-solar {[Fe/H] gt 0.2}, well-sampling the entire HR-diagram in
each bin. Such a library will surpass all extant compilations and have
lasting archival value, well into the Next Generation Space Telescope
era. Because of the universal utility and community-broad nature of
this venture, we waive the entire proprietary period.
STIS/CCD 10000
STIS Pure Parallel Imaging Program: Cycle 12
This is the default archival pure parallel program for STIS during
cycle 12.
STIS/CCD 10017
CCD Dark Monitor-Part 1
Monitor the darks for the STIS CCD.
STIS/CCD 10019
CCD Bias Monitor – Part 1
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1,
and 1×1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.
STIS/MA1 10034
Cycle 12 MAMA Dark Monitor
This test performs the routine monitoring of the MAMA detector dark
noise. This proposal will provide the primary means of checking on
health of the MAMA detectors systems through frequent monitoring of
the background count rate. The purpose is to look for evidence of
change in dark indicative of detector problem developing.
WFPC2 10067
WFPC2 Cycle 12 Decontaminations and Associated Observations
This proposal is for the monthly WFPC2 decons. Also included are
instrument monitors tied to decons: photometric stability check, focus
monitor, pre- and post-decon internals {bias, intflats, kspots, &
darks}, UV throughput check, VISFLAT sweep, and internal UV flat
check.
WFPC2 10069
WFPC2 CYCLE 12 Supplemental Darks, Part 1/3
This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot
pixels.
WFPC2 10075
WFPC2 CYCLE 12 Intflat and Viflat Sweeps and Filter Rotation Anomaly
Monitor
Using intflat observations, this WFPC2 proposal is designed to monitor
the pixel-to-pixel flatfield response and provide a linearity check.
The intflat sequences, to be done once during the year, are similar to
those from the Cycle 11 program 9597. The images will provide a backup
database in the event of complete failure of the visflat lamp as well
as allow monitoring of the gain ratios. The sweep is a complete set of
internal flats, cycling through both shutter blades and both gains.
The linearity test consists of a series of intflats in F555W, in each
gain and each shutter. As in Cycle 11, we plan to continue to take
extra visflat, intflat, and earthflat exposures to test the
repeatability of filter wheel motions.
WFPC2 9709
POMS Test Proposal: WFII parallel archive proposal
This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None
COMPLETED OPS REQs:
17060-0 Gen Slew for Proposal 9987 Slot 10 @314/1555z
17061-0 Gen Slew for Proposal 9987 Slot 11 @314/1557z
OPS NOTES EXECUTED:
1139-2 Battery#5 Capacity Test Ground Limits (closed) @314/1530z
1164-0 Battery#3 Capacity Test Ground Limits (closed) @314/1530z
SCHEDULED SUCCESSFUL FAILURE TIMES FGS GSacq 6 6 FGS REacq 8 8 FHST Update 18 18 LOSS of LOCK
SIGNIFICANT EVENTS: None