Status Report

NASA Hubble Space Telescope Daily Report # 3478

By SpaceRef Editor
October 29, 2003
Filed under , ,





ACS 9984

Cosmic Shear With ACS Pure Parallels

Small distortions in the shapes of background galaxies by foreground
mass provide a powerful method of directly measuring the amount and
distribution of dark matter. Several groups have recently detected
this weak lensing by large-scale structure, also called cosmic shear.
The high resolution and sensitivity of HST/ACS provide a unique
opportunity to measure cosmic shear accurately on small scales. Using
260 parallel orbits in Sloan textiti {F775W} we will measure for the
first time: beginlistosetlength sep0cm setlengthemsep0cm setlength
opsep0cm em the cosmic shear variance on scales <0.7 arcmin, em the skewness of the shear distribution, and em the magnification effect. endlist Our measurements will determine the amplitude of the mass power spectrum sigma_8Omega_m^0.5, with signal-to-noise {s/n} ~ 20, and the mass density Omega_m with s/n=4. They will be done at small angular scales where non-linear effects dominate the power spectrum, providing a test of the gravitational instability paradigm for structure formation. Measurements on these scales are not possible from the ground, because of the systematic effects induced by PSF smearing from seeing. Having many independent lines of sight reduces the uncertainty due to cosmic variance, making parallel observations ideal.


The Ultra Deep Field with ACS

The ACS Ultra Deep Field {UDF} is a survey carried out by using
Director’s Discretionary time. The main science driver are galaxy
evolution and cosmology. The primary instrument is the Advanced Camera
for Surveys but WFPC2 and NICMOS will also be used in parallel. The
data will be made public. The UDF consists of a single ultra-deep
field {410 orbits in total} within the CDF-S GOODS area. The survey
will use four filters: F435W {55 orbits}, F606W {55 orbits}, F775W
{150 orbits}, and F850LP {150 orbits}. The F435W {B} and F606W {V}
exposures will be one magnitude deeper than the equivalent HDF
filters. The F775W {I} exposure will be 1.5 magnitude deeper than the
equivalent HDF exposure. The depth in F775W and F850LP is optimized
for searching very red objects – like z=6 galaxies – at the detection
limit of the F850LP image. The pointing will be RA{J2000}=3 32 40.0
and Decl.{J2000}=-27 48 00. These coordinates may change slightly due
to guide star availability and implementation issues. We will attempt
to include in the field both a spectroscopically confirmed z=5.8
galaxy and a spectroscopically confirmed type Ia SN at z=1.3. The
pointing avoids the gaps with the lowest effective exposure on the
Chandra ACIS image of CDFS. This basic structure of the survey
represents a consensus recommendation of a Scientific Advisory
Committee to the STScI Director Steven Beckwith. A local Working Group
is looking in detail at the implementation of the survey.


CCD Daily Monitor

This program consists of basic tests to monitor, the read noise, the
development of hot pixels and test for any source of noise in ACS CCD
detectors. This programme will be executed once a day for the entire
lifetime of ACS.


Search for Black Holes in M31 Globular Clusters

Whether globular clusters contain a central massive black hole remains
a very controversial subject today, and yet is extremely important for
theoretical models for black hole and cluster formation. Furthermore,
the existence of intermediate-mass black holes has important
implications for supermassive black hole and galactic bulge formation,
as well as providing signatures in gravitational wave detectors. We
propose to obtain high spatial resolution, long-slit spectroscopy of
two globular clusters in M31, G78 and G280. These two clusters
represent the best ones in which to constrain a central black hole.
Most importantly, both of these clusters have long central relaxation
times, and thus confusion between a central black hole and a
collection of heavy stellar remnants is alleviated. We have considered
all globular clusters in our Galaxy and in M31; STIS observations of
these two will provide the strongest limits for a black hole in any
cluster, and better than the two claims made previously in the
literature. Combined with the data for G1, these three clusters have
the three highest central velocity dispersions for any cluster in the
Local Group and will shed light on possible connections between galaxy
and globular cluster formation.

FGS 9879

An Astrometric Calibration of the Cepheid Period-Luminosity Relation

We propose to measure the parallaxes of 10 Galactic Cepheid variables.
There is no other instrument on or off the earth that can consistently
deliver HST FGS level of precision for critical parallaxes. When these
parallaxes {with 1-sigma precisions of 10% or better} are added to our
recent HST FGS parallax determination of delta Cep {Benedict et al
2002}, we anticipate determining the Period-Luminosity relation zero
point with a 0.03 mag precision. In addition to permitting the test of
assumptions that enter into other Cepheid distance determination
techniques, this calibration will reintroduce Galactic Cepheids as a
fundamental step in the extragalactic distance scale ladder. A
Period-Luminosity relation derived from solar metallicity Cepheids can
be applied directly to extragalactic solar metallicity Cepheids,
removing the need to bridge with the Large Magellanic Cloud and its
associated metallicity complications.

FGS 9888

Trigonometric Calibration of the Period- Luminosity Relations for
Fundamental and First-Overtone Galactic Cepheids

Cepheids are the primary distance indicators for the extragalactic
distance scale and the Hubble constant. The Hubble Constant Key
Project set the zero-point for their Cepheid distance scale by
adopting a distance to the LMC, averaged over a variety of techniques.
However, different methods give an LMC distance modulus ranging from
18.1 to 18.8, and the uncertainty in the Cepheid zero-point is now the
largest contributor to the error budget for H_0. Moreover, the low
metallicity of the LMC raises additional concerns, since the PL
relation probably depends on metallicity. The zero-point can be
determined from Hipparcos parallaxes of Galactic Cepheids out to
several hundred parsecs, but with a typical parallax error of 0.5-1
mas, the Hipparcos error bars are uncomfortably large for this
demanding application. By contrast, HST’s FGS1R interferometer can
achieve astrometric accuracy of 0.2 mas. We propose to use FGS1R to
determine trigonometric parallaxes for a sample of 9 nearby Cepheids,
including both fundamental {F} and first-overtone {FO} pulsators. We
show that the improvement in the PL relations for F and FO Cepheids
will be dramatic. We will determine the PL slopes from our nearby
solar- metallicity sample alone, without recourse to nearby galaxies
and the issue of [Fe/H] dependence. The zero-point will be determined
robustly to about 0.05 mag, based on accurate, purely geometrical
measurements. All of this can be achieved in the next few years with
HST, without having to wait for the technically demanding and risky
SIM and GAIA missions well into the next decade.

NIC/NIC3 9865

The NICMOS Parallel Observing Program

We propose to continue managing the NICMOS pure parallel program.
Based on our experience, we are well prepared to make optimal use of
the parallel opportunities. The improved sensitivity and efficiency of
our observations will substantially increase the number of
line-emitting galaxies detected. As our previous work has
demonstrated, the most frequently detected line is Halpha at

NIC1/NIC2/NIC3 8792

NICMOS Post-SAA calibration – CR Persistence Part 3

A new procedure proposed to alleviate the CR-persistence problem of
NICMOS. Dark frames will be obtained immediately upon exiting the SAA
contour 23, and every time a NICMOS exposure is scheduled within 50
minutes of coming out of the SAA. The darks will be obtained in
parallel in all three NICMOS Cameras. The POST-SAA darks will be
non-standard reference files available to users with a USEAFTER
date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to
the header of each POST-SAA DARK frame. The keyword must be populated
with the time, in addition to the date, because HST crosses the SAA ~8
times per day so each POST-SAA DARK will need to have the appropriate
time specified, for users to identify the ones they need. Both the raw
and processed images will be archived as POST-SAA DARKSs. Generally we
expect that all NICMOS science/calibration observations started within
50 minutes of leaving an SAA will need such maps to remove the CR
persistence from the science images. Each observation will need its
own CRMAP, as different SAA passages leave different imprints on the
NICMOS detectors.

NIC3 9979

The Ultra Deep Field – NICMOS Parallels

This is a plan to manage the NICMOS pure parallels of the ACS Ultra
Deep Survey. We will obtain a mix of F110W and F160W images along
sight-lines within the mosaiced ACS fields of the CDF-S GOODS and GEMS
surveys, with these sight-lines enabling an examination of the space
density and morphologies of the reddest galaxies.

STIS 9786

The Next Generation Spectral Library

We propose to continue the Cycle 10 snapshot program to produce a Next
Generation Spectral Library of 600 stars for use in modeling the
integrated light of galaxies and clusters. This program is using the
low dispersion UV and optical gratings of STIS. The library will be
roughly equally divided among four metallicities, very low {[Fe/H] lt
-1.5}, low {[Fe/H] -1.5 to -0.5}, near-solar {[Fe/H] -0.3 to 0.1}, and
super-solar {[Fe/H] gt 0.2}, well-sampling the entire HR-diagram in
each bin. Such a library will surpass all extant compilations and have
lasting archival value, well into the Next Generation Space Telescope
era. Because of the universal utility and community-broad nature of
this venture, we waive the entire proprietary period.

STIS/CCD 10000

STIS Pure Parallel Imaging Program: Cycle 12

This is the default archival pure parallel program for STIS during
cycle 12.

STIS/CCD 10017

CCD Dark Monitor-Part 1

Monitor the darks for the STIS CCD.

STIS/CCD 10019

CCD Bias Monitor – Part 1

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1,
and 1×1 at gain = 4, to build up high-S/N superbiases and track the
evolution of hot columns.


The Ultra Deep Field – STIS parallels

We propose to obtain slitless spectroscopy of objects in the GEMS and
GOODS area around the UDF.

STIS/MA1 10034

Cycle 12 MAMA Dark Monitor

This test performs the routine monitoring of the MAMA detector dark
noise. This proposal will provide the primary means of checking on
health of the MAMA detectors systems through frequent monitoring of
the background count rate. The purpose is to look for evidence of
change in dark indicative of detector problem developing.

WFPC2 10069

WFPC2 CYCLE 12 Supplemental Darks, Part 1/3

This dark calibration program obtains 3 dark frames every day to
provide data for monitoring and characterizing the evolution of hot

WFPC2 10082

POMS Test Proposal: WFII backup parallel archive proposal

This is a POMS test proposal designed to simulate scientific plans

WFPC2 9634

POMS Test Proposal: WFII targeted parallel archive proposal

The parallel opportunities available with WFPC2 in the neighborhood of
bright galaxies are treated in a slightly different way from the
normal pure parallels. Local Group galaxies offer the opportunity for
a closer look at young stellar populations. Narrow-band images in
F656N can be used both to identify young stars via their emission
lines, and to map the gas distribution in star-forming regions. Thus,
the filter F656N is added to the four standard filters. Near more
distant galaxies, up to about 10 Mpc, we can map the population of
globular clusters; for this purpose, F300W is less useful, and only
F450W, F606W, and F814W will be used.

WFPC2 9709

POMS Test Proposal: WFII parallel archive proposal

This is the generic target version of the WFPC2 Archival Pure Parallel
program. The program will be used to take parallel images of random
areas of the sky, following the recommendations of the 2002 Parallels
Working Group.

WFPC2 9980

The Ultra Deep Field – WFPC2 Parallels

The ACS Ultra Deep Field {UDF} is a survey carried out by using
Director’s Discretionary time. The main science drivers are galaxy
evolution and cosmology. The primary instrument is the Advanced Camera
for Surveys but WFPC2, NICMOS, and STIS will also be used in pure
parallel mode. The data will be made public. The UDF consists of a
single ultra-deep field {410 orbits in total} within the CDF-S GOODS
area. We request a modification of the default pure parallel programs.
Rather than duplicate the redder bands which will be done much better
with ACS, we propose to observe in the near-ultraviolet F300W filter.
These data will enable study of the rest-frame ultraviolet morphology
of galaxies at 0


Significant Spacecraft Anomalies: (The following are preliminary
reports of potential non-nominal performance that will be
investigated.) None



                            SCHEDULED     SUCCESSFUL    FAILURE TIMES
FGS GSacq                06                        06
FGS REacq                11                        11
FHST Update              11                        11


A Solar Flare of X-18 category erupted from Sunspot 486 @ 301/11:10Z,
the Coronal Mass Ejection (CME) is estimated to be the third most
powerful flare in recorded history and is predicted to hit the Earth’s
atmosphere at between 302/16:00Z – 18:00Z. Depending on the CME’s
magnetic orientation, it could set off a dramatic display of colorful
northern lights well into the mid-latitudes.

Reduction in Full-Charge Current (Off-lining +D SPA) scheduled, 1st
opportunity, 302/11:55Z – 12:43Z (OR 17056 with attached IP-046 and
COP 4.32).

The VMS segment of PASS Release 31.85 was successfully placed into
formal operations Day 300 on the SOGS cluster and an aliveness test of
the new software was successfully performed.

SpaceRef staff editor.