Status Report

Morphological Comparison of Blocks in Chaos Terrains on Pluto, Europa, and Mars

By SpaceRef Editor
April 29, 2021
Filed under ,

Helle L. Skjetne, Kelsi N. Singer, Brian M. Hynek, Katie I. Knight, Paul M. Schenk, Cathy B. Olkin, Oliver L. White, Tanguy Bertrand, Kirby D. Runyon, William B. McKinnon, Jeffrey M. Moore, S. Alan Stern, Harold A. Weaver, Leslie A. Young, Kim Ennico

Chaos terrains are characterized by disruption of preexisting surfaces into irregularly arranged mountain blocks with a chaotic appearance. Several models for chaos formation have been proposed, but the formation and evolution of this enigmatic terrain type has not yet been fully constrained. We provide extensive mapping of the individual blocks that make up different chaos landscapes, and present a morphological comparison of chaotic terrains found on Pluto, Jupiter’s moon Europa, and Mars, using measurements of diameter, height, and axial ratio of chaotic mountain blocks. Additionally, we compare mountain blocks in chaotic terrain and fretted terrain on Mars. We find a positive linear relationship between the size and height of chaos blocks on Pluto and Mars, whereas blocks on Europa exhibit a flat trend as block height does not generally increase with increasing block size. Block heights on Pluto are used to estimate the block root depths if they were floating icebergs. Block heights on Europa are used to infer the total thickness of the icy layer from which the blocks formed. Finally, block heights on Mars are compared to potential layer thicknesses of near-surface material. We propose that the heights of chaotic mountain blocks on Pluto, Europa, and Mars can be used to infer information about crustal lithology and surface layer thickness.

Comments: 45 pages, 3 tables, 9 figures, 5 appendices

Subjects: Earth and Planetary Astrophysics (astro-ph.EP); Geophysics (physics.geo-ph)

Journal reference: Icarus (New York, N.Y. 1962), pp. 113866 (2020)

DOI: 10.1016/j.icarus.2020.113866

Cite as: arXiv:2104.12033 [astro-ph.EP] (or arXiv:2104.12033v1 [astro-ph.EP] for this version)

Submission history

From: Helle Leth Skjetne 

[v1] Sat, 24 Apr 2021 23:07:51 UTC (21,613 KB)

https://arxiv.org/abs/2104.12033

SpaceRef staff editor.