Status Report

How to identify the youngest protostars

By SpaceRef Editor
June 14, 2005
Filed under , ,
How to identify the youngest protostars
http://images.spaceref.com/news/extrasolar.44.jpg

Astrophysics, abstract
astro-ph/0505291


From: Dimitris Stamatellos [view email]
Date: Fri, 13 May 2005 15:46:48 GMT (599kb)

How to identify the youngest protostars

Authors:
D. Stamatellos,
A.P. Whitworth,
D.F.A. Boyd,
S.P. Goodwin (School of Physics & Astronomy, Cardiff University)

Comments: Accepted by A&A (avaliable with high-res images at
this http URL)


We study the transition from a prestellar core to a Class 0 protostar, using
SPH to simulate the dynamical evolution, and a Monte Carlo radiative transfer
code to generate the SED and isophotal maps. For a prestellar core illuminated
by the standard interstellar radiation field, the luminosity is low and the SED
peaks at ~190 micron. Once a protostar has formed, the luminosity rises (due to
a growing contribution from accretion onto the protostar) and the peak of the
SED shifts to shorter wavelengths (~80-100 micron). However, by the end of the
Class 0 phase, the accretion rate is falling, the luminosity has decreased, and
the peak of the SED shifts back towards longer wavelengths (90-150 micron). In
our simulations, the density of material around the protostar remains
sufficiently high well into the Class 0 phase that the protostar only becomes
visible in the NIR if it is displaced from the centre dynamically. Raw submm/mm
maps of Class 0 protostars tend to be much more centrally condensed than those
of prestellar cores. However, when convolved with a typical telescope beam, the
difference in central concentration is less marked, although the Class 0
protostars appear more circular. Our results suggest that, if a core is deemed
to be prestellar on the basis of having no associated IRAS source, no cm radio
emission, and no outflow, but it has a circular appearance and an SED which
peaks at wavelengths below ~170 micron, it may well contain a very young Class
0 protostar.

Full-text: PostScript, PDF, or Other formats


References and citations for this submission:

SLAC-SPIRES HEP (refers to ,
cited by, arXiv reformatted);

CiteBase (autonomous citation navigation and analysis)


Which authors of this paper are endorsers?




Links to:
arXiv,
astro-ph,
/find,
/abs (/+), /0505,
?




SpaceRef staff editor.