Evaluating the Dynamical Stability of Outer Solar System Objects in the Presence of Planet Nine
Juliette Becker, Fred Adams, Tali Khain, Stephanie Hamilton, David Gerdes
(Submitted on 20 Jun 2017)
We evaluate the dynamical stability of a selection of outer solar system objects in the presence of the proposed new Solar System member Planet Nine. We use a Monte Carlo suite of numerical N-body integrations to construct a variety of orbital elements of the new planet and evaluate the dynamical stability of eight Trans-Neptunian objects (TNOs) in the presence of Planet Nine. These simulations show that some combinations of orbital elements (a,e) result in Planet Nine acting as a stabilizing influence on the TNOs, which can otherwise be destabilized by interactions with Neptune. These simulations also suggest that some TNOs transition between several different mean-motion resonances during their lifetimes while still retaining approximate apsidal anti-alignment with Planet Nine. This behavior suggests that remaining in one particular orbit is not a requirement for orbital stability. As one product of our simulations, we present an {\it a posteriori} probability distribution for the semi-major axis and eccentricity of the proposed Planet Nine based on TNO stability. This result thus provides additional evidence that supports the existence of this proposed planet. We also predict that TNOs can be grouped into multiple populations of objects that interact with Planet Nine in different ways: one population may contain objects like Sedna and 2012 VP113, which do not migrate significantly in semi-major axis in the presence of Planet Nine and tend to stay in the same resonance; another population may contain objects like 2007 TG422 and 2013 RF98, which may both migrate and transition between different resonances.
Comments: accepted to AJ
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Cite as: arXiv:1706.06609 [astro-ph.EP] (or arXiv:1706.06609v1 [astro-ph.EP] for this version)
Submission history
From: Juliette Becker
[v1] Tue, 20 Jun 2017 18:07:44 GMT (4544kb,D)
https://arxiv.org/abs/1706.06609