Press Release

Teledyne e2v CCD image sensors successfully capture first light image of JPCam JST/T250 telescope

By SpaceRef Editor
July 21, 2020
Filed under , ,

eledyne e2v, a Teledyne Technologies [NYSE: TDY] company and part of the Teledyne Imaging Group, congratulates Centro de Estudios de Física del Cosmos de Aragón (CEFCA) and the Javalambre Astrophysical Observatory (OAJ) on reaching the technological completion milestone and recording for the first time images of the sky using JPCam.

The first light image recorded the Andromeda Galaxy (M31), located 2.5 million light years away. 

According to CEFCA, JPCam is the definitive scientific instrument of the OAJ JST/T250 telescope, designed to perform large sky surveys. JPCam is the second largest astronomical camera in the world, with more than 1200 million pixels distributed in a mosaic of 14 Teledyne e2v scientific CCD (CCD290-99) image sensors that work in high vacuum conditions and at -110 degrees Celsius. Weighing over 1.5 tons, it provides scientific image quality with high resolution across its wide field of view.

Teledyne e2v designed and provided the 1.2 gigapixel camera for JPCam, which consists of the focal plane array (FPA), the detector control electronics and the CCD290-99 image sensors along with the auxiliary CCD detectors for guiding and focusing JPCam. A key feature of the system is the FPA to be contained in a custom cryogenic cooler.

The data collected by JPCam will be of great importance for different fields of Astrophysics. The project will allow humanity to study questions such as the nature of dark energy or the history of the expansion of the Universe throughout the last 10.8 billion years, as well as inform scientists, astronomers and physicists about the formation and evolution of galaxies, the structure and history of our Galaxy, the Milky Way , or the systematic study of asteroids in our Solar System.

Dr. Antonio Marín-Franch, researcher at the Centro de Estudios de Física del Cosmos de Aragón, Head of the OAJ, and Project Manager of JPCam, commented: “This is, no doubt, the greatest complexity of the telescope-camera system, since it has been designed to provide very good image quality in an enormous field of view. This fact has conditioned the opto-mechanical designs of the JST/T250 and JPCam.” He continued: “The night was great and we got fantastic results, measuring, as expected, an excellent and homogeneous image quality throughout the field of view.”

Christophe Tatard, Vice President Business and Product Development at Teledyne e2v said: “This is a great achievement for everyone involved. The camera FPA, FPGA control electronics and integration within the cryogenic cooling system for JPCam is a fantastic example of the Teledyne e2v’s complete system design and delivery capability for high precision and difficult environments.”

SpaceRef staff editor.