Press Release

Earth Likley to be Spared From One Form of Cosmic Gloom

By SpaceRef Editor
January 8, 2003
Filed under , ,
Earth Likley to be Spared From One Form of Cosmic Gloom

We have one less thing to worry about. While the cosmic debris from a nearby massive star explosion, called a supernova, could destroy the Earth’s protective ozone layer and cause mass extinction, such an explosion would have to be much closer than previously thought, new calculations show.

Scientists at NASA and Kansas University have determined that the supernova would need to be within 26 light years from Earth to significantly damage the ozone layer and allow cancer-causing ultraviolet radiation to saturate the Earth’s surface.

An encounter with a supernova that close only happens at a rate of about once in 670 million years, according to Dr. Neil Gehrels of NASA’s Goddard Space Flight Center in Greenbelt, Md., who presents these findings today at the American Astronomical Society meeting in Seattle.

“Perhaps a nearby supernova has bombarded Earth once during the history of multicellular life with its punishing gamma rays and cosmic rays,” said Gehrels. “The possibility for mass extinction is indeed real, yet the risk seems much lower than we have thought.”

The new calculations are based largely on advances in atmospheric modeling, analysis of gamma rays produced by a supernova in 1987 called SN1987a, and a better understanding of galactic supernova locations and rates. A supernova is an explosion of a star at least twice as massive as our Sun.

Previous estimates from the 1970s stated that supernovae as far as 55 light years from Earth could wipe out up to 90 percent of the atmosphere for hundreds of years. The damage would be from gamma rays and cosmic rays, both prodigiously emitted by supernovae. Gamma rays are the most energetic form of light. Cosmic rays are atomic particles, the fastest-moving matter in the Universe, produced when the expanding shell of gas from the exploded star runs into surrounding dust and gas in the region. Gamma rays, moving at light speed, would hit the Earth’s atmosphere first, followed closely by the cosmic rays moving at close to light speed.

Gamma-ray light particles (called photons) and the cosmic-ray particles can wreak havoc in the upper atmosphere, according to Dr. Charles Jackman of NASA Goddard, who provided the atmospheric analysis needed for the new calculation.

The particles collide with nitrogen gas (N2) and break the molecule into highly-reactive nitrogen atoms (N). The nitrogen atoms then react fairly quickly with oxygen gas (O2) to form nitric oxide (NO) and, subsequently, other nitrogen oxides (NOx). The nitrogen oxide molecules can then destroy ozone (O3) through a catalytic process. This means that a single NOx molecule can destroy an ozone molecule and remain intact to destroy hundreds of more ozone molecules.

The new calculations — based on the NASA Goddard two-dimensional photochemical transport model — show that a supernova within 26 light years from Earth could wipe out 47 percent of the ozone layer, allowing approximately twice the amount of cancer-causing ultraviolet radiation to reach the Earth’s surface. Excessive UV radiation is harmful to both plants and animals, thus a doubling of UV levels would be a significant problem to life on Earth.

The gamma-ray irradiation would last 300 to 500 days. The ozone layer would then repair itself, but only to endure cosmic-ray bombardment shortly after, lasting at least 10 years. (Cosmic rays are electrically charged particles whose paths are influenced by magnetic fields, and the extent of such fields in the interstellar medium is not well understood.)

The calculations simultaneously point to the resilience of the ozone layer as well as its fragility in a violent Universe, said Dr. Claude Laird of the University of Kansas, who developed the gamma-ray and cosmic ray input code and performed the atmospheric model simulations. Although the ozone layer should recover relatively rapidly once the particle influx tapers off — within about one to two years, the Goddard models show — even this short period of time is sufficient to cause significant and lasting damage to the biosphere.

“The atmosphere usually protects us from gamma rays, cosmic rays, and ultraviolet radiation, but there’s only so much hammering it can take before Earth’s biological defenses break down,” he said.

Dr. John Cannizzo of NASA Goddard and University of Maryland, Baltimore Country, initiated and coordinated the new calculations. “I’ve long been fascinated by the possibility of extinction from something as remote as a star explosion,” he said. “With this updated calculation, we essentially worked backwards to determine what level of ozone damage would be needed to double the level of ultraviolet radiation reaching the Earth’s surface and then determined how close a supernova would need to be to cause that kind of damage.”

These results will appear in the Astrophysical Journal 2003, March 10, vol. 585. Co-authors include Barbara Mattson of NASA Goddard (via L3 Com Analytics Corporation) and Wan Chen of Sprint IP Design in Reston, Virginia.

For images and more information, refer to:

Astrophysics, abstract

From: John K. Cannizzo <[email protected]>
Date: Fri, 15 Nov 2002 16:05:31 GMT (526kb)

Ozone Depletion from Nearby Supernovae

Neil Gehrels,
Claude M. Laird,
Charles H. Jackman,
John K. Cannizzo,
Barbara J. Mattson,
Wan Chen

Comments: 24 pages, 4 Postscript figures, to appear in The Astrophysical
Journal, 2003 March 10, vol. 585

Estimates made in the 1970’s indicated that a supernova occurring within tens
of parsecs of Earth could have significant effects on the ozone layer. Since
that time, improved tools for detailed modeling of atmospheric chemistry have
been developed to calculate ozone depletion, and advances have been made in
theoretical modeling of supernovae and of the resultant gamma-ray spectra. In
addition, one now has better knowledge of the occurrence rate of supernovae in
the galaxy, and of the spatial distribution of progenitors to core-collapse
supernovae. We report here the results of two-dimensional atmospheric model
calculations that take as input the spectral energy distribution of a
supernova, adopting various distances from Earth and various latitude impact
angles. In separate simulations we calculate the ozone depletion due to both
gamma-rays and cosmic rays. We find that for the combined ozone depletion
roughly to double the “biologically active” UV flux received at the surface
of the Earth, the supernova must occur at <8 pc. Based on the latest data, the
time-averaged galactic rate of core-collapse supernovae occurring within 8 pc
is ~1.5/Gyr. In comparing our calculated ozone depletions with those of
previous studies, we find them to be significantly less severe than found by
Ruderman (1974), and consistent with Whitten et al. (1976). In summary, given
the amplitude of the effect, the rate of nearby supernovae, and the ~Gyr time
scale for multicellular organisms on Earth, this particular pathway for mass
extinctions may be less important than previously thought.

Full-text: PostScript, PDF, or Other formats

References and citations for this submission:

SLAC-SPIRES HEP (refers to ,
cited by, arXiv reformatted)

Links to:
/abs (/+), /0211,

SpaceRef staff editor.