Press Release

Distant World in Peril Discovered from La Silla – Giant Exoplanet Orbits Giant Star

By SpaceRef Editor
January 22, 2003
Filed under , ,
Distant World in Peril Discovered from La Silla – Giant Exoplanet Orbits Giant Star
exoplanet

Summary

Images online at http://www.eso.org/outreach/press-rel/pr-2003/pr-03-03.html

When, in a distant future, the Sun begins to expand and evolves into a “giant” star, the surface temperature on the Earth will rise dramatically and our home planet will eventually be incinerated by that central body.

Fortunately for us, this dramatic event is several billion years away. However, that sad fate will befall another planet, just discovered in orbit about the giant star HD 47536, already within a few tens of millions of years. At a distance of nearly 400 light-years from us, it is the second-remotest planetary system discovered to date [1].

This is an interesting side-result of a major research project, now carried out by a European-Brazilian team of astronomers [2]. In the course of a three-year spectroscopic survey, they have observed about 80 giant stars in the southern sky with the advanced FEROS spectrograph on the 1.52-m telescope installed at the ESO La Silla Observatory (Chile). It is one of these stars that has just been found to host a giant planet. This is only the fourth such case known and with a diameter of about 33 million km (or 23.5 times that of our Sun), HD 47536 is by far the largest of those giant stars [1].

The distance of the planet from the star is still of the order of 300 million km (or twice the distance of the Earth from the Sun), a safe margin now, but this will not always be so. The orbital period is 712 days, i.e., somewhat less than two Earth years, and the planet’s mass is 5 – 10 times that of Jupiter.

The presence of exoplanets in orbit around giant stars, some of which will eventually perish into their central star (be “cannibalized”), provides a possible explanation of the anomalous abundance of certain chemical elements that is observed in the atmospheres of some stars, cf. ESO PR 10/01.

This interesting discovery bodes well for coming observations of exoplanetary systems with new, more powerful instruments, like HARPS to be installed next year at the ESO 3.6-m telescope on La Silla and also the Very Large Telescope Interferometer (VLTI) at Paranal.

  • PR Photo 05a/02: Giant stars observed in this programme (HR-diagram)
  • PR Photo 05b/02: Giant star HD 47536.
  • PR Photo 05c/02: “Velocity curve” of HD 47536.
  • PR Photo 05d/02: Distance distribution of known exoplanets.

Stellar evolution

The structure and evolution of stars like our Sun are quite well understood. They are born by contraction in immense clouds of dust and gas and when the central density and temperature become high enough, nuclear fusion ignites in their interiors. Then follows a long period of relative calm – the Sun is now in this phase – that ends when the nuclear fuel runs out. A direct result is that the star begins to expand and soon becomes a “giant”. During this phase, the surface temperature drops somewhat (but is still several thousand degrees) and the colour of the star changes from yellow to red.

In the case of the Sun, this will happen some billion years from now. At some moment, our star will become larger and the surface of our home planet will become exceedingly hot, incinerating whatever remaining lifeforms that cannot protect themselves.

Later, the Sun will shred its outer layers into space and a small, hot core will become visible. This final stage of stellar evolution can be observed as beautiful “Planetary Nebulae”, e.g. the Dumbbell Nebula of which an impressive VLT photo is available (ESO PR Photos 38a-b/98).

A spectroscopic survey of giant stars

ESO PR Photo 05a/03

  • [Preview – JPEG: 400 x 467 pix – 128k
  • [Normal – JPEG: 800 x 933 pix – 288k]

Caption: PR Photo 05a/03 shows part of the Hertzsprung-Russell (HR) diagram [3] – a very useful way to illustrate stellar evolution. Plotting the temperature of solar-type stars (abscissa; in degrees Kelvin or as a “colour index”) against their intrinsic brightness (ordinate; in solar units) reveals a typical distribution (hotter stars are less bright than cooler stars) that reflect their different evolutionary stages. With time, the position of the Sun in this diagram (now at the lower left) will migrate towards the upper right as it expands and becomes brighter. This direction corresponds to increasing radius. The approximately 80 stars plotted here are those that are being spectroscopically observed within the present programme; cf. the text. The positions and names of four giant stars that are known to host planets are marked [1]. The largest and brightest of them is HD 47536, as indicated by its upper-right position, relative to the three others.

Since 1999, a European-Brazilian team of astronomers [2] has been studying a selection of comparatively bright giant stars with the goal to learn more about their physical properties. In particular, detailed spectra have been obtained by means of the advanced FEROS spectrograph on the 1.52-m telescope that is installed at the ESO La Silla Observatory in Chile, cf. ESO PR 03/99.

About 80 stars have been regularly observed with this instrument, in order to search for possible velocity variations [4]. In PR Photo 05a/03, their temperature and intrinsic brightness are plotted in the so-called Hertzsprung-Russell diagram [3], a very useful way of illustrating stellar evolution.

The background for this ambitious research project is that recent observations indicate that some giant stars may undergo small velocity variations with periods from days to years. While short-term variations are likely to be caused by oscillations in their extended and tenous atmospheres, there are at least three possible causes for long-term variations: 1) the gravitational pull of one or more orbiting planets, 2) radial pulsations of the entire star, or 3) variable surface patterns due to stellar activity.

Which of these possibilities are behind the observed velocity variations? How many of those stars pulsate? Do some of them possess planets and if so, are planetary systems around giant stars common or not?

“These are very fundamental questions” says team leader Johny Setiawan of the Kiepenheuer-Institut in Freiburg (Germany), “and the present discovery was somehow unexpected. Many of our giant stars show similar long-period velocity variations which we suspect are due to stellar activity”.

A planet around HD 47536

ESO PR Photo 05b/03

[Preview – JPEG: 400 x 462 pix – 68k [Normal – JPEG: 800 x 924 pix – 360k]

ESO PR Photo 05c/03

[Preview – JPEG: 400 x 433 pix – 112k [Normal – JPEG: 800 x 866 pix – 256k]

 ESO PR Photo 05d/03

[Preview – JPEG: 477 x 400 pix – 96k [Normal – JPEG: 953 x 800 pix – 272k]

Captions: PR Photo 05b/03 shows a sky area of 10 x 10 arcmin2 around the 6th-magnitude giant star HD 47536 which a new exoplanet has been found (reproduced from the Digital Sky Survey [STScI Digitized Sky Survey, (C) 1993, 1994, AURA, Inc. all rights reserved – cf. http://archive.eso.org/dss/dss]). The pattern is caused by internal reflections in the telescope from this relatively bright object. PR Photo 05c/03 displays the “velocity curve” of HD 47536, caused by the pull of the orbiting planet during the 712-day period (abscissa: Julian Date – 2,400,000; ordinate: velocity in kilometres per second along the line-of-sight). Error bars indicate the accuracy of the measurements. The fully-drawn curve is the computed velocity curve, corresponding to the best-fitting planetary orbit. The lower part of the diagram displays the deviation of the measurements from this curve – in the mean about 0.025 km/sec, or 25 m/sec. In PR Photo 05d/03, the distribution of the distances of the 100+ known exoplanets is shown, with the planet around HD 47536 at the extreme end.

The extensive observations began three years ago, with the main aim to pin down the cause(s) for any possible long-term variations. For this programme to succeed, it was also necessary to monitor other properties of these stars, in particular more rapid changes in the upper atmosphere (“stellar activity”).

The first results indicate that about 70% of these stars display velocity variations. Among them, the 6th-magnitude star HD 47536 in the southern constellation of Canis Major (The Great Dog) soon caught the eye of the observers, as the measured velocity variations strongly indicated the presence of a planetary companion. The same FEROS spectra also show that other possible explanations, including stellar activity, are very unlikely to be responsible for those variations.

At a distance of 396 light-years, the new exoplanet is the second-most remote one found to date. It moves around HD 47536 in a slightly elongated orbit and one revolution lasts almost exactly two Earth years (712 days). Depending on the mass of the star (which is not well known yet), the distance of the planet from the star is somewhere between 240 and 337 million km (the mean distance of planet Mars to the Sun is 228 million km) and the new planet has between 4.9 and 9.7 times the mass of planet Jupiter (for assumed stellar mass 1.1 and 3.0 times that of the Sun, respectively). The indicated planetary mass is in any case too small for this object to be a “failed star”, it is a bona-fide planet.

Implications

“We are very excited about this discovery”, says Luca Pasquini of ESO, “because it now widens the search for exoplanets towards more massive stars. The observational problem is that most massive stars rotate very rapidly during the first phase of the lives. This makes accurate measurements of minute velocity variations caused by the gravitaional pull of accompanying planets virtually impossible. However, in the later phase of their lives when they become giants, they slow down considerably and we then have a much better chance of detecting possible exoplanets in orbit around them.”

The giant planet in orbit around HD 47536 is now most probably witnessing some of those dramatic events that will happen to the Earth some billions of years from now. Its central star is slowly but steadily expanding and occupies a progressively larger fraction of the sky above the planet. The insolation is becoming more and more intense, with the resulting atmospheric effects – rising temperature and violent winds. Some tens of millions of years from now, the unlucky planet is doomed to lose its gaseous layers entirely and the surface will become burning hot.

The discovery has other interesting implications. For years, the present team of astronomers has been studying certain giant stars that are found to contain much lithium. However, this light element is rapidly consumed in such stars and it should really not be there, see also ESO PR 10/01.

“No problem now”, says team member Licio da Silva from the Observatório Nacional in Rio de Janeiro (Brazil), “one obvious possibility is that those stars have obtained their lithium by recently swallowing a nearby planet. But until recently, this hypothesis was considered rather exotic, because of the lack of evidence of planets in danger”. Indeed, with this discovery of a giant planet near a giant star, that explanation is looking quite plausible.

Perspectives

With over 70 other giant stars still under close scrutiny, the perspectives for the present programme appear very promising. The present discovery comes at a moment when the team is working hard to sift through the many observational data – it is quite possible that they will find other giant stars with planet-induced velocity variations.

At the same time, the observational means for this kind of research are getting ever more powerful. Soon, the HARPS very high-precision spectrometer will be installed at the ESO 3.6-m telescope on La Silla. It has been built by the Geneva Observatory in collaboration with ESO and will be dedicated to the search for exoplanets.

More information

The information presented in this Press Release is based on a research article (“Evidence of a Sub-Stellar Companion around HD 47536” by Johny Setiawan et al.) that will soon appear as a Letter to the Editor in the European research journal “Astronomy & Astrophysics” (Vol. 398 No. 2, p. L19 – February 2003).

Notes

[1]: The only known exoplanet that is farther away is that just found around the dwarf star OGLE-TR-56b. Until now, four exoplanets are known in orbits around giant stars, the present one around HD 47536 and others around HD 27442, iota Draconis and gamma Cephei. With a diameter of about 33 million km (i.e., 23.5 times that of the Sun), HD 47536 is by far the largest of these stars (the three others have diameters smaller than 20 million km).

[2]: The team consists of Johny Setiawan and Oskar von der Lühe (Kiepenheuer-Institut für Sonnenphysik, Freiburg (Breisgau), Germany), Artie Hatzes (Thüringer Landessternwarte, Tautenburg, Germany), Luca Pasquini (ESO, Garching, Germany), Dominique Naef, Didier Queloz and Stephane Udry (Observatoire de Genève, Switzerland), Licio da Silva (Observatório Nacional, Rio de Janeiro, Brazil) and Leo Girardi (Osservatorio Astronomico di Trieste, Italy).

[3]: The diagram is named after Danish astronomer Einar Hertzsprung (1873-1967) and American astronomer Henry Norris Russell (1877 – 1957). At the beginning of the 20th century they independently noticed that red stars come in very different sizes, pioneering subsequent studies of stellar diameters. This diagram plots stellar temperature (or colour) against brightness (or magnitude) and is therefore also known as the “colour-magnitude diagram”.

[4]: The (radial) velocity of a star is determined from its spectrum by measuring the (small) wavelength shift of the spectral lines, due to the Doppler effect.

Contacts

Johny Setiawan

Kiepenheuer Institut für Sonnenphysik

Freiburg, Germany

Tel: +49-761-3198160

email: [email protected]

Artie Hatzes

Thüringer Landessternwarte

Tautenburg, Germany

Tel: +49-36427-863-51

email: [email protected]

SpaceRef staff editor.