Why NASA Is Trying to Crash Land on Mars
Like a car’s crumple zone, the experimental SHIELD lander is designed to absorb a hard impact.
NASA has successfully touched down on Mars nine times, relying on cutting-edge parachutes, massive airbags, and jetpacks to set spacecraft safely on the surface. Now engineers are testing whether or not the easiest way to get to the Martian surface is to crash.
Rather than slow a spacecraft’s high-speed descent, an experimental lander design called SHIELD (Simplified High Impact Energy Landing Device) would use an accordion-like, collapsible base that acts like the crumple zone of a car and absorbs the energy of a hard impact.
The new design could drastically reduce the cost of landing on Mars by simplifying the harrowing entry, descent, and landing process and expanding options for possible landing sites.
SHIELD is a Mars lander concept that could allow lower-cost missions to visit the Martian surface by using an impact-absorbing, collapsible base to safely crash land. Credit: NASA/JPL-Caltech
“We think we could go to more treacherous areas, where we wouldn’t want to risk trying to place a billion-dollar rover with our current landing systems,” said SHIELD’s project manager, Lou Giersch of NASA’s Jet Propulsion Laboratory in Southern California. “Maybe we could even land several of these at different difficult-to-access locations to build a network.”
Car Crashes, Mars Landings
Much of SHIELD’s design borrows from work done for NASA’s Mars Sample Return campaign. The first step in that campaign involves the Perseverance rover collecting rock samples in airtight metal tubes; a future spacecraft will carry those samples back to Earth in a small capsule and safely crash land in a deserted location.