Status Report

Mars Odyssey THEMIS Image: Hebrus Valles

By SpaceRef Editor
June 3, 2002
Filed under , ,


Medium image for 20020603a
Image Context:
Context image for 20020603a
Context image credit: NASA/Mars Orbiter Laser Altimeter (MOLA) Team







The ScienceThe Story
Hebrus Valles is located in the Elysium Planitia region of the northern lowlands of the planet. This image shows three sinuous tributaries of the channel system which carved up the surrounding plains. These individual tributaries are up to 3km wide and have up to three terraces visible along their margins. These terraces may indicate separate flood events or may be the result of one flood plucking away at channel wall materials with varying strengths of resistance. It is not clear if these are separate rock layers or just the erosion of one type of material from rising and falling water levels. A streamlined island is visible in the lower third of the image. This feature indicates that flow was from the lower right to upper left in this region (the tail of the island points downstream). In places ripples, interpreted to be dunes, can also be seen along the interface of the channel floor with the walls. Smaller, fainter channels can also be seen scouring the plains, especially in the lower portion of this image. Other features of note in this image are the various inselbergs (isolated hills) located primarily in the upper portion of the image. The inselbergs are surrounded with aprons of material that was probably shed off of the hills by various processes of erosion.

[Source: ASU THEMIS Science Team]

Mars was once the scene of some major floods that rushed out upon the land, carving all kinds of channels. These signs of ancient flooding have always been exciting to scientists who want to understand the history of water on the planet. Water is important to understanding the climate and geological history of Mars, as well as whether life could ever have developed there.

While we can’t tell much about the life question from pictures like this one, it does give some insights into the great flood itself. You can see three tributaries of a channel system that are up to two miles wide or so.

The really interesting thing is that you can see terraces of land that step down from the sides of the tributaries. How did they form? Was there one massive flood that swept through, eroding materials with varying strengths of resistance? Or was it several, separate floods? And what could the answer tell us about the types of rocks and materials in this region? No one knows if these are separate rock layers or just one type of material that has eroded from rising and falling water levels.

While these questions will continue to intrigue geologists, one thing that they can tell for sure is the direction the water flowed. Can you find the tear-drop shaped island in the now dry channel? On Earth, we see these islands created in rivers all the time. The “tail” of the island (the point on the teardrop) points downstream, so that means the flood rushed down the channel from the lower right to the upper left.

Since the flood, there is some rippling evidence on the channel floor that dunes may have formed. Smaller, fainter channels can also be seen scouring the plains, especially in the lower portion of this image. Other interesting features in this image are the various inselbergs (isolated hills) located primarily in the upper portion of the image. The inselbergs are surrounded with aprons of material that was probably shed off of the hills by various processes of erosion.

[Questions? Email marsoutreach@jpl.nasa.gov]

[Source: NASA/JPL Mars Outreach]




Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.


NASA’s Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA’s Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

Image Credit: NASA/JPL/Arizona State University



[ Show Full-Size Image (GIF) ] [ Show Full-Size Image (JPG) ]
[ Show Full-Size Image (PNG) ] [ Show Full-Size Image (TIF) ]











ParameterValue ParameterValue
Latitude18.5 &nbsp InstrumentVIS
Longitude232.6W (127.4E) &nbsp Resolution (m)19
Image Size (pixels)3025×1227 &nbsp Image Size (km)57.5×23.3

SpaceRef staff editor.