BioExpt-1 Braced For Deep Space
As NASA prepares to return to the Moon through Artemis, teams at the agency’s Kennedy Space Center in Florida are working to send much smaller life forms to space to help scientists better understand the effects of space radiation before humans return to the lunar surface.
A number of science experiments, including the agency’s Biology Experiment-1 (BioExpt-1), will be flying on board Artemis I – the mission that will test the agency’s Space Launch System (SLS) rocket and Orion as an integrated system before sending astronauts to the Moon.
NASA’s Space Biology Program selected four biology experiments to fly as part of BioExpt-1, which involves using plant seeds, fungi, yeast, and algae to study the effects of space radiation before sending humans to the Moon and, eventually, to Mars.
“Each of these four experiments will help us understand a unique aspect of how biological systems can adapt and thrive in deep space,” said Sharmila Bhattacharya, NASA program scientist for space biology. “Gathering information like this and analyzing it after flight will eventually help us paint the full picture of how we can help humans thrive in deep space.”
During Artemis I, Orion will travel more than 40,000 miles beyond the Moon, passing through the Van Allen Belts – areas beyond low-Earth orbit where cosmic radiation is trapped – and providing researchers with a true deep space environment for conducting these experiments.
“We don’t currently know what the effects of radiation are outside of low-Earth orbit and how that could affect our system and our biology,” said Dinah Dimapilis, NASA project manager. “I’m excited to see what we can learn from these experiments, to see us go back to the Moon, and to know that I get to be a part of all of this.”
The four experiments will be split into two science bags fabricated and assembled by personnel with the Test Operations and Support Contract at Kennedy. About three weeks before launch, each science bag will be carefully placed into container assemblies built by a team with the Florida spaceport’s Laboratory Support Services and Operations Contract and then secured to the backbone of Orion.
When Orion finishes its journey and splashes down in the Pacific Ocean, each of the experiments will be returned to the principal investigators for further study. Those principal investigators were awarded grants from NASA Biological and Physical Sciences, totaling approximately $1.6 million. The awardees are Federica Brandizzi, Ph.D., Michigan State University; Timothy Hammond, Ph.D., Institute for Medical Research, Inc.; Zheng Wang, Ph.D., Naval Research Laboratory; and Luis Zea, Ph.D., University of Colorado, Boulder.
Astrobiology, Space biology,