Status Report

1I/’Oumuamua as an N2 ice fragment of an exo-Pluto surface: I. size and compositional constraints Alan P. Jackson, Steven J. Desch

By SpaceRef Editor
March 23, 2021
Filed under , ,

The origin of the interstellar object 1I/’Oumuamua has defied explanation. We perform calculations of the non-gravitational acceleration that would be experienced by bodies composed of a range of different ices and demonstrate that a body composed of N2 ice would satisfy the available constraints on the non-gravitational acceleration, size and albedo, and lack of detectable emission of CO or CO2 or dust. We find that ‘Oumuamua was small, with dimensions 45 m x 44 m x 7.5 m at the time of observation at 1.42 au from the Sun, with a high albedo of 0.64. This albedo is consistent with the N2 surfaces of bodies like Pluto and Triton. We estimate ‘Oumuamua was ejected about 0.4-0.5 Gyr ago from a young stellar system, possibly in the Perseus arm. Objects like ‘Oumuamua may directly probe the surface compositions of a hitherto-unobserved type of exoplanet: “exo-plutos”. In a companion paper (Desch & Jackson, 2021) we demonstrate that dynamical instabilities like the one experienced by the Kuiper belt, in other stellar systems, plausibly could generate and eject large numbers of N2 ice fragments. ‘Oumuamua may be the first sample of an exoplanet brought to us.

Comments: 24 pages, 3 figures, 2 tables. Accepted for publication in JGR: Planets. Code available at this https URL

Subjects: Earth and Planetary Astrophysics (astro-ph.EP)

Cite as: arXiv:2103.08788 [astro-ph.EP] (or arXiv:2103.08788v1 [astro-ph.EP] for this version)

Submission history

From: Alan Jackson

[v1] Tue, 16 Mar 2021 00:58:26 UTC (206 KB)

https://arxiv.org/abs/2103.08788

SpaceRef staff editor.