Status Report

Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio

By SpaceRef Editor
January 25, 2016
Filed under , ,

S. Lorek, B. Gundlach, P. Lacerda, J. Blum
(Submitted on 21 Jan 2016)

Comets are remnants of the icy planetesimals that formed beyond the ice line in the Solar Nebula. Growing from micrometre-sized dust and ice particles to km-sized objects is, however, difficult because of growth barriers and time scale constraints. The gravitational collapse of pebble clouds that formed through the streaming instability may provide a suitable mechanism for comet formation.
We study the collisional compression of cm-sized porous ice/dust-mixed pebbles in collapsing pebble clouds. For this, we developed a collision model for pebbles consisting of a mixture of ice and dust, characterised by their dust-to-ice mass ratio. Using the final compression of the pebbles, we constrain combinations of initial cloud mass, initial pepple porosity, and dust-to-ice ratio that lead to cometesimals which are consistent with observed bulk properties of cometary nuclei.

We find that observed high porosity and low density of ~0.5 g/cc of comet nuclei can only be explained if comets formed in clouds with mass approximately M>1e18 g. Lower mass clouds would only work if the pebbles were initially very compact. Furthermore, the dust-to-ice ratio must be in the range of between 3 and 9 to match the observed bulk properties of comet nuclei. (abridged version)

Comments: 14 pages, 5 figures, accepted for publication in A&A
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Cite as: arXiv:1601.05726 [astro-ph.EP] (or arXiv:1601.05726v1 [astro-ph.EP] for this version)
Submission history
From: Sebastian Lorek
[v1] Thu, 21 Jan 2016 17:54:31 GMT (1090kb)
http://arxiv.org/abs/1601.05726

SpaceRef staff editor.