Science and Exploration

Monster Black Hole Wakes Up After 26 Years

By Keith Cowing
Press Release
June 25, 2015
Filed under , , ,
Monster Black Hole Wakes Up After 26 Years
Black hole
ESA

At the time, the astronomers also looked back at archival data from optical telescopes over the twentieth century, finding two previous outbursts, one in 1938 and another one in 1956.
These peaks of activity, which occur every two to three decades, are likely caused by material slowly piling up in the disc surrounding the black hole, until eventually reaching a tipping point that dramatically changes the black hole’s feeding routine for a short period.

“The behaviour of this source is extraordinary at the moment, with repeated bright flashes of light on time scales shorter than an hour, something rarely seen in other black hole systems,” comments Erik Kuulkers, Integral project scientist at ESA.

“In these moments, it becomes the brightest object in the X-ray sky up to fifty times brighter than the Crab Nebula, normally one of the brightest sources in the high-energy sky.”

The V404 Cygni black hole system has not been this bright and active since 1989, when it was observed with the Japanese X-ray satellite Ginga and high-energy instruments on board the Mir space station.

“The community couldn’t be more thrilled: many of us weren’t yet professional astronomers back then, and the instruments and facilities available at the time can’t compare with the fleet of space telescopes and the vast network of ground-based observatories we can use today. It is definitely a ‘once in a professional lifetime’ opportunity,” adds Kuulkers.

The 1989 outburst of V404 Cygni was crucial in the study of black holes. Until then, astronomers knew only a handful of objects that they thought could be black holes, and V404 Cygni was one of the most convincing candidates.

A couple of years after the 1989 outburst, once the source had returned to a quieter state, the astronomers were able to see its companion star, which had been outshone by the extreme activity. The star is about half as massive as the Sun, and by studying the relative motion of the two objects in the binary system, it was determined that the companion must be a black hole, about twelve times more massive than the Sun.

“Now that this extreme object has woken up again, we are all eager to learn more about the engine that powers the outburst we are observing,” says Carlo Ferrigno from the Integral Science Data Centre at the University of Geneva, Switzerland.

“As coordinators of Integral operations, Enrico Bozzo and I received a text message at 01:30 am on 18 June from our burst alert system, which is designed to detect gamma-ray bursts in the Integral data. In this case, it turned out to be ‘only’ an exceptional flare since Integral was observing this incredible black hole: definitely a good reason to be woken up in the middle of the night!”

Since the first outburst detection on 15 June by the Swift satellite, V404 Cygni has remained very active, keeping astronomers extremely busy. Over the past week, several teams around the world published over twenty Astronomical Telegrams and other official communications, sharing the progress of the observations at different wavelengths.

This exciting outburst has also been discussed by astronomers attending the European Week of Astronomy and Space Science conference this week in Tenerife, sharing information on observations that have been made in the past few days.

Integral too has been observing this object continuously since 17 June, except for some short periods when it was not possible for operational reasons. The X-ray data show huge variability, with intense flares lasting only a couple of minutes, as well as longer outbursts over time scales of a few hours. Integral also recorded a huge emission of gamma rays from this frenzied black hole.

Because different components of a black-hole binary system emit radiation at different wavelengths across the spectrum, astronomers are combining high-energy observations with those made at optical and radio wavelengths in order to get a complete view of what is happening in this unique object.

“We have been observing V404 Cygni with the Gran Telescopio Canarias, which has the largest mirror currently available for optical astronomy,” explains Teo Muoz-Darias from the Instituto de Astrofsica de Canarias in Tenerife, Spain.

Using this 10.4-m telescope located on La Palma, the astronomers can quickly obtain high quality spectra, thus probing what happens around the black hole on short time scales.

“There are many features in our spectra, showing signs of massive outflows of material in the black hole’s environment. We are looking forward to testing our current understanding of black holes and their feeding habits with these rich data,” adds Muoz-Darias.

Radio astronomers all over the world are also joining in this extraordinary observing campaign. The first detection at these long wavelengths was made shortly after the first Swift alert on 15 June with the Arcminute Microkelvin Imager from the Mullard Radio Astronomy Observatory near Cambridge, in the UK, thanks to the robotic mode of this telescope.

Like the data at other wavelengths, these radio observations also exhibit a continuous series of extremely bright flares. Astronomers will exploit them to investigate the mechanisms that give rise to powerful jets of particles, moving away at velocities close to the speed of light, from the black hole’s accretion disc.

There are only a handful of black-hole binary systems for which data have been collected simultaneously at many wavelengths, and the current outburst of V404 Cygni offers the rare chance to gather more observations of this kind. Back in space, Integral has a full-time job watching the events unfold.

“We have been devoting all of Integral’s time to observe this exciting source for the past week, and we will keep doing so at least until early July,” comments Peter Kretschmar, ESA Integral mission manager.

“The observations will soon be made available publicly, so that astronomers across the world can exploit them to learn more about this unique object. It will also be possible to use Integral data to try and detect polarisation of the X-ray and gamma ray emission, which could reveal more details about the geometry of the black hole accretion process. This is definitely material for the astrophysics textbooks for the coming years.”

More imagery

SpaceRef co-founder, Explorers Club Fellow, ex-NASA, Away Teams, Journalist, Space & Astrobiology, Lapsed climber.