Status Report

NASA ISS On-Orbit Status 22 September 2012

By SpaceRef Editor
September 22, 2012
Filed under , , ,
NASA ISS On-Orbit Status 22 September 2012
http://images.spaceref.com/news/exp32.jpg

All ISS systems continue to function nominally, except those noted previously or below. Saturday – Crew off duty.

After wakeup, FE-4 Malenchenko performed the routine inspection of the SM (Service Module) PSS Caution & Warning panel as part of regular Daily Morning Inspection.

CDR Williams, FE-6 Hoshide & FE-4 Malenchenko joined in conducting the regular weekly three-hour task of thorough cleaning of their home, including all USOS (US Orbit Segment) modules like Lab, Nodes, COL (Columbus Orbital Laboratory) and Kibo JPM (JEM Pressurized Module). [“Uborka”, usually done on Saturdays, includes removal of food waste products, cleaning of compartments with vacuum cleaner, damp cleaning of the SM dining table, other frequently touched surfaces and surfaces where trash is collected, as well as the sleep stations with a standard cleaning solution; also, fan screens and grilles are cleaned to avoid temperature rises. Special cleaning is also done every 90 days on the HEPA (high-efficiency particulate air) bacteria filters in the Lab.]

As part of Uborka house cleaning, Yuri completed regular weekly maintenance inspection & cleaning of fan screens in the FGB (TsV2) plus Group E fan grilles in the SM (VPkhO, FS5, FS6, VP), and the grilles of the BMP Harmful Contaminants Removal System and SKV air conditioner in the SM.

Akihiko Hoshide performed regular (~weekly) inspection & maintenance, as required, of the CGBA-4 (Commercial Generic Bioprocessing Apparatus 4) and CGBA-5 payloads in their ERs (EXPRESS Racks) at Lab O2 & O1, focusing on cleaning the muffler air intakes.

In COL, Sunita Williams reached midpoint at about 1:00pm EDT for her on-going 3rd (FD75) session of the ICV Ambulatory Monitoring assessment, after which she began the second 24h data collection period, with Makita batteries for the Cardiopres swapped and recharged during the day. [For the second 24 hr period, the Cardiopres was temporarily doffed and the HM2 HiFi CF Card and AA Battery were changed out to allow continuation of the session for another 24 hours. After data collection is complete, the Actiwatches and both HM2 HiFi CF Cards are downloaded to the HRF PC1, while Cardiopres data are downloaded to the EPM (European Physiology Module) Rack and transferred to the HRF PC1 via a USB key for downlink. The sessions are scheduled at or around FD14, FD30, FD75, FD135 and R-15 (there will be fewer sessions if mission duration is less than six months). (ICV activities consist of two separate but related parts over a one-week time period: an ultrasound echo scan & an ambulatory monitoring session.)]

Yuri Malenchenko supported the overnight test of the TEKh-39 LCS (Laser Communications System, Russian: SLS) in the SM by copying the test data collected overnight from the RSE-SLS A31p laptop to the RSS2 laptop for data downlink and log file dump, supported by ground specialist tagup.

Hoshide filled out his 8th standard FFQ (Food Frequency Questionnaire) on the MDLT (Medical Laptop). [On the FFQs, USOS astronauts keep a personalized log of their nutritional intake over time on special MDLT software. Recorded are the amounts consumed during the past week of such food items as beverages, cereals, grains, eggs, breads, snacks, sweets, fruit, beans, soup, vegetables, dairy, fish, meat, chicken, sauces & spreads, and vitamins. The FFQ is performed once a week to estimate nutrient intake from the previous week and to give recommendations to ground specialists that help maintain optimal crew health. Weekly estimation has been verified to be reliable enough that nutrients do not need to be tracked daily.]

Yuri conducted the routine daily service of the SOZh system (Environment Control & Life Support System, ECLSS) in the SM. [Regular daily SOZh maintenance consists, among else, of checking the ASU toilet facilities, replacement of the KTO & KBO solid waste containers, replacement of EDV-SV waste water and EDV-U urine containers and filling EDV-SV, KOV (for Elektron), EDV-ZV & EDV on RP flow regulator.]

At ~8:45am EDT, the three crewmembers held the regular WPC (Weekly Planning Conference) with the ground, discussing next week’s “Look-Ahead Plan” (prepared jointly by MCC-H and TsUP-Moscow timeline planners), via S-band/audio, reviewing upcoming activities and any concerns about future on-orbit events.

At ~10:20am, Malenchenko engaged in a PAO TV interview with Ekaterina Beloglazova, Editor of Rossiyskiy Kosmos Magazine, an old friend of ISS cosmonauts, responding to her questions.

The crew worked out on the CEVIS cycle ergometer with vibration isolation (CDR, FE-5), TVIS treadmill with vibration isolation & stabilization (FE-4), ARED advanced resistive exercise device (CDR, FE-5), and VELO ergometer bike with load trainer (FE-4). [CDR & FE-6 are on the special experimental SPRINT protocol which diverts from the regular 2.5 hrs per day exercise regime and introduces special daily sessions involving resistive and aerobic (interval & continuous) exercise, followed by a USND (Ultrasound) leg muscle self scan in COL. No exercise is being timelined for Suni on Friday, for Aki on Thursday. If any day is not completed, Suni & Aki pick up where they left off, i.e., they would be finishing out the week with the last day of exercise on her off day.]

Tasks listed for FE-4 Malenchenko on the Russian discretionary “time permitting” job for today were –

* More preparation & downlinking of reportages (written text, photos, videos) for the Roskosmos website to promote Russia’s manned space program (max. file size 500 Mb), and

* A ~30-min. session for Russia’s EKON Environmental Safety Agency, making observations and taking KPT-3 aerial photography of environmental conditions on Earth using the NIKON D3X camera with the RSK-1 laptop.

Weekly Science Update (Expedition Thirty-Three – Week 12)

2D NANO Template (JAXA): Mission completed.

3D SPACE: Complete.

ACE-1 (Advanced Colloids Experiment 1, NASA): No report.

ALTCRISS (Alteino Long Term monitoring of Cosmic Rays on the ISS): Complete.

ALTEA SHIELD Shielding (NASA/ASI): On 8/9, Aki exchanged the shielding tiles with a second set. The session#2 immediately started afterwards. The two materials being investigated for their shielding capacity on-board are polyethylene (session#1) and Kevlar (session#2). To date, the session#2 has progressed nominally, with 42 cumulative days (of minimal 40 / preferred 60 days) of science acquisition. This means that the minimum amount of data acquisition was reached on 09/18. It is planned to continue measuring until the milestone of preferred amount of days is reached. [Cosmic radiation consists of very small, atomic-sized particles that are flying around in space at tremendous speeds. Their energy is so high that these particles, like tiny bullets, can permeate through the complete structure of the ISS. Exposure of astronauts to cosmic radiation is risky from a medical point of view. The best way to protect our astronauts against cosmic radiation is to build the complete ISS from lead! This would solve the problem but the enormous mass can impossibly be launched into space. Therefore different materials, much lighter than lead, are being tested to be used as shielding materials. Two of those will be investigated in the ALTEA-SHIELD experiment. The effectiveness of the shielding materials will be measured on board by a set of special radiation detectors. Some detectors will be covered with tiles made of shielding materials, some others will not. We are looking forward to find out what difference it will make!”]

Amine Swingbed (NASA): Continuing failure investigation for position sensor failure anomaly.

AMS-02 (Alpha Magnetic Spectrometer): AMS recorded its 22 billionth cosmic ray event.

APEX (Advanced Plant Experiments on Orbit) -Cambium: No report.

APEX-TAGES (Transgenic Arabidopsis Gene Expression System): No report.

Asian Seed 2010 (JAXA): Returned on ULF6.

BASS (Burning and Suppression of Solids, NASA): (The BASS hardware has been stowed until we resume tests beginning sometime in December 2012 or January 2013.) BCAT-6 (Binary Colloidal Alloy Test 6, CSA): No report. [Colloids are particles as small as a few tens of nanometers (a thousandth of a thousandth of a millimeter) that are suspended in a medium, usually a liquid or a gas. The name “colloid” comes from the Greek word for “glue”, and expresses very important properties of colloids: when small and light enough, particles can be influenced in their behavior by forces of electromagnetic origin, and make them stick together, or repel each other depending on the configuration. Colloids are widely studied in science because the forces between particles can be controlled and tuned and because particles, while being small enough to be influenced by such forces, are big and slow enough to be seen with a relatively simple and inexpensive laboratory instrument like a microscope. This is why colloids are often studied as model for molecular systems (like standard gases or liquids) where molecules, the individual constituents, are much smaller than colloids and cannot be seen with light. As mentioned, forces between colloids can be tuned giving rise to a rich variety of phenomena. One of them is aggregation, which is when particles stick together and tend to form structures. Among the many ways to induce particle aggregation, one allows to do so by controlling the temperature of the solution in which the particles are immersed, thanks to very weak forces called “critical Casimir forces” that have been predicted more than 30 years ago but just partially verified in experiments. The objective of SODI COLLOID is to measure such forces and produce a controlled aggregation of tiny plastic particles. This would allow to shed light on critical Casimir forces and to make a step towards the fabrication of new nanostructured materials with remarkable optical properties for industrial applications.]

BCAT-C1 (Binary Colloidal Alloy Test C1, CSA): “Thanks, Suni, for transferring the images from run 2 of sample 1. The images are now in the hands of the science team at Simon Fraser University.”

BLB (Biolab, ESA): No report.

BIORHYTHMS 48 (Biological Rhythms, JAXA): No report.

BISE (Bodies in the Space Environment, CSA): No report.

BISPHOSPHONATES: No report.

BXF-Facility (Boiling eXperiment Facility, NASA): No report.

BXF-MABE (Microheater Array Boiling Experiment, NASA): No report.

BXF-NPBX (Pool Boiling Experiment, NASA): No report.

CARD (Long Term Microgravity Model for Investigating Mechanisms of Heart Disease, ESA): No report.

CARDIOCOG-2: Complete.

CB (JAXA Clean Bench): No report.

CBEF-2 (JAXA Cell Biology Experiment Facility)/SPACE SEED: No report.

CCISS (Cardiovascular & Cerebrovascular Control on Return from ISS): No report.

CERISE (JAXA): No report.

CCF (Capillary Channel Flow, NASA): No report.

CFE-2 (Capillary Flow Experiment 2, NASA): No report.

CFS-A (Colored Fungi in Space-A, ESA): No report.

CSI-5/CGBA-5 (CGBA Science Insert #5/Commercial Generic Bioprocessing Apparatus 5): No report.

CGBA-2 (Commercial Generic Bioprocessing Apparatus 2): Complete.

CIR (Combustion Integrated Rack), MDCA/Flex: No report.

CIRCADIAN RHYTHMS (ESA): No report.

Commercial (Inc 23&24, JAXA): No report.

Commercial (Inc 25 & 26, JAXA): No report.

Commercial (Inc 32, JAXA): No report.

CSAC (Chip-Scale Atomic Clock, SPHERES): No report.

CSLM-2 (Coarsening in Solid-Liquid Mixtures 2): No report.

CsPins (JAXA): No report.

CubeLab: No report.

CW/CR (Cell Wall/Resist Wall) in EMCS (European Modular Cultivation System): Complete.

DECLIC-ALI (Device for the Study of Critical Liquids & Crystallization-ALICE-like, CNES/NASA): Today, the latest Tc determination was successfully obtained. From the starting date of the ALI-DECLIC activities, 18 months ago, and 6 sequences corresponding to about 18 weeks running, the 5th Critical Temperature (Tc) determination shows that changes of about 0.5mK are only due to the sensors electronic drift, while the true Tc value of the fluid test cell was reproduced in a 100uK range. The next week will be dedicated to the study of the fluid thermal response to calibrated heat pulses in the one-phase range.

DomeGene (JAXA): Complete.

DOSIS (Dose Distribution Inside ISS, ESA): “Nominal science acquisition continues with active dosimeters inside Columbus as the passive detector packages (PDPs) returned with 30S. On 9/19 the data from the active dosimeters was successfully downlinked.”

DTN (Delay Tolerant Network, NASA): No report.

EarthKAM (Earth Knowledge Acquired by Middle School Students): No report.

EDR (European Drawer Rack, ESA): No report.

EKE (Endurance Capacity by Gas Exchange and Heart Rate Kinetics During Physical Training, ESA): The EKE experiment will have gathered a second in-flight data set based on a data sharing agreement with VO2max. As mentioned it is believed that enough strokes during the calibration are available to allow to perform a ground calibration of the data. Pending EKE science team confirmation.

ELITE-S2 (Elaboratore Immagini Televisive – Space 2): Planned.

EMCS (European Modular Cultivation System): No report.

ENERGY (ESA): No report. [Background: In the ENERGY experiment, astronauts are invited to participate in a study that aimed to evaluate how much food is needed for astronauts during long-term space missions. To do so, the science team will measure every component or variable of the astronaut’s energy expenditure reflecting his energy needs. Those variables will be measured twice: up to 4 months before flight and after at least 3 months in space but 3 weeks before landing. The changes in the astronaut’s energy balance and expenditure will be measured, which will help in deriving an equation for energy requirements in weightlessness. This will contribute to planning adequate, but not excessive cargo supplies for food.]

ENose (Electronic Nose): No report.

EPM (European Physiology Module): No report.

EPO (Education Payload Operations, NASA) Demos: No report.

EPO (Educational Payload Operations, NASA) (Eye in the Sky; Sleep 2): No report.

EPO (Educational Payload Operations, NASA) (Sesame Street): No report.

EPO (Educational Payload Operations, NASA) (Kids in Micro-G): No report.

EPO (Educational Payload Operations, NASA) (Earth/Moon/Mars Demo): No report.

EPO (Educational Payload Operations, NASA) (Space Sports): No report.

EPO (Educational Payload Operations, NASA) (ISS Orbit): No report.

EPO (Educational Payload Operations, ESA): No report.

EPO CONVECTIONS (ESA): “No report.

EPO MISSION X (ESA): No report.

EPO Spaceship Earth (ESA): No report.

EPO LES-2 (ESA): No report.

EPO GREENHOUSE (ESA): No report.

EPO 3-min Video (JAXA): No report.

EPO J-Astro Report (JAXA): No report.

EPO Dewey’s Forest (JAXA): Closed out on 3/15.

EPO Space Clothes (JAXA): Complete.

EPO Hiten (Dance, JAXA): No report.

EPO Lego Bricks (NASA, JAXA): No report.

EPO Moon Score (JAXA): No report.

EPO OpticSphere & ISSOrbit-Demo (NASA): No report.

EPO Kibo Kids Tour (JAXA): Complete.

EPO Paper Craft (Origami, JAXA): No report.

EPO Poem (JAXA): No report.

EPO-5 SpaceBottle (Message in a Bottle, JAXA): No report.

EPO-6 Spiral Top 2 (JAXA): No report.

EPO-7 Doctor Demo (JAXA): No report.

EPO-7 Green Tea Preparation (JAXA): No report.

EPO-7 Ink Ball (JAXA): No report.

EPO-7 Video (JAXA):

EPO-7 Try Zero-G (JAXA): No report.

EPO-8 Space Sakura (JAXA): No report.

EPO-8 Space Musical Instruments (JAXA): No report.

EPO-9 (JAXA): “Aki, thank you for completing JAXA-REPORT05 and 08.”

EPO-10 (JAXA): “Aki, thank you for JAXA-VIDEO-TAKING3.”

ERB-2 (Erasmus Recording Binocular, ESA): [ERB-2 aims are to develop narrated video material for various PR & educational products & events, including a 3D interior station view.] “Suni and Aki, thanks for powering on ERB-2. During the time when ERB-2 was on, several files could be transferred. There are still around 28 files remaining on ERB-2, which will have to be transferred later on.”

ETD (Eye Tracking Device): Completed.

FACET-2 (JAXA): No report.

FERULATE (JAXA): No report.

FIR/LMM/CVB (Fluids Integrated Rack / Light Microscopy Module / Constrained Vapor Bubble): No report.

Fish Scales (JAXA): Completed on FD7/ULF-4 and returned on STS-132.

FOAM STABILITY EPO (ESA): No report.

FOCUS: No report.

FSL (Fluid Science Laboratory, ESA): | No report.

FWED (Flywheel Exercise Device, ESA): No report.

GENARA-A (Gravity Regulated Genes in Arabidopsis A/ESA): No report.

GEOFLOW-2 (ESA): Experiment completed! [Background: Everybody is familiar with liquids. In an average day we get to use, handle or drink water or other liquids. And everybody knows how fluids (that is liquids and gases) behave: when subjected to a net force, may be pressure, a temperature difference or gravity, they can move freely. Scientists have been studying how fluids move for centuries, and managed to write mathematical formulas that can describe and predict such movements. Unfortunately, these equations are extremely complex and only approximate solutions are known. As a result, our quantitative understanding of fluid movement is just partial. This is especially true for natural phenomena where the forces can be enormous and unpredictable, like in oceans or in the atmosphere, or the interior of the earth, where rocks are exposed to pressures and temperatures so incredibly high that they slowly move and adapt their shape. That is, over hundreds of years rocks flow just like a very viscous liquid. Scientists try to study such flows but cannot observe them directly due to the fact that they take place deep beneath the surface of our planet. The only way is to have computers simulating those movements starting from the equations, but how to check whether computers are correct? This is what Geoflow II is trying to answer on board the International Space Station. Geoflow II is a miniature planet that has some of its essential ingredients: a fluid can freely move inside a spherical container that rotates, has temperature differences and has a simulated gravity directed towards the centre just like in a real planet. By taking pictures of the fluid movements, scientists are able to understand the essential characteristics of the flows and determine whether computer simulations are correct or whether they need to be refined and improved towards a better understanding of the elusive movements that take place inside our planet.]

GLACIER (General Laboratory Active Cryogenic ISS Experiment Refrigerator, NASA): No report.

HAIR (JAXA): No report.

HDTV System (JAXA): No report.

Hicari (JAXA): No report.

Holter ECG (JAXA): No report.

HQPC (JAXA): No report.

HREP (HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric & Ionospheric Detection System/JAXA): HICO has provided some of the most interesting images from April and May 2012 with this status. The most recent HICO images include the coast of Italy, part of Spain and Looe Key, Florida. RAIDS is continuing to collect secondary Science data including nighttime atmospheric disk photometry, spectra and temperatures. Extreme Ultra Violet airglow spectroscopy and optical contamination studies will also be performed.

HRF-1 (Human Research Facility 1, NASA): No report.

HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions/JAXA): No report.

ICE CRYSTAL (JAXA): Complete.

ICV (Integrated Cardiovascular): No report.

IMMUNO (Neuroendocrine & Immune Responses in Humans During & After Long Term Stay at ISS; RS): No report.

INTEGRATED IMMUNE: No report.

InSPACE-3 (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 3): No report.

IRIS (Image Reversal in Space, CSA): No report.

ISS Amateur/Ham Radio: No report.

ISSAC (ISS Agricultural Camera, NASA): ISSAC experienced loss of H&S on 9/18 and was powered down due to laptop issue. Laptop was powered on successfully on Friday and team has now resumed their nominal imaging operations. This week (GMT 258-262), ISSAC captured 27 strip targets, equivalent of 1150 images. ISSAC collected several images of International Disaster Charter targets and wildfires in the United States. Images were also distributed to appropriate ground officials including US Forest Services and USGS team.

IV Gen (Intravenous Fluids Generation): No report.

JOURNALS (Behavioral Issues Associated with Isolation and Confinement, NASA): No report. [Studies conducted on Earth have shown that analyzing the content of journals and diaries is an effective method for identifying the issues that are most important to a person. The method is based on the reasonable assumption that the frequency that an issue or category of issues is mentioned in a journal reflects the importance of that issue or category to the writer. The tone of each entry (positive, negative, or neutral) and phase of the expedition also are variables of interest. Study results will lead to recommendations for the design of equipment, facilities, procedures, and training to help sustain behavioral adjustment and performance during long-duration space expeditions to the ISS, asteroids, the Moon, Mars, and beyond. Results from this study could help to improve the behavioral performance of people living and working under a variety of conditions here on Earth.]

KUBIK 3/6, KID (ESA): No report.

LMM/PACE-2 (Light Microscopy Module / Preliminary Advanced Colloids Experiment): No report.

LEGO Bricks: No report.

LOCAD-PTS (Lab-on-a-Chip Application Development-Portable Test System): No report.

MAMS (Microgravity Acceleration Measurement System, NASA): No report.

Marangoni Exp. (JAXA): No report.

Marangoni DSD – Dynamic Surf (JAXA): Payload name was change from Marangoni DSD to Dynamic Surf.

Marangoni UVP (JAXA): No report.

MARES (Muscle Atrophy Research & Exercise System, ESA/NASA): No report.

Matryoshka-2 (RSA): No report.

MAXI (Monitor of All-sky X-ray Image, JAXA): External payload. Continuing telemetry monitoring. VSC raw image data downloaded on GMT 261 and GMT 263.

MCE (Multi-Mission Consolidated Equipment, JAXA): GLIMS check out, IMAP check out, SIMPLE ops and HDTV ops have been performed.

MDCA/Flex-2: No report.

Medaka Osteoklast (JAXA): New calibration data files for pH/DO sensor were successfully uplinked and installed into MSPR ELT on GMT 258.

MEIS (Marangoni Experiment for ISS) in JAXA FPEF (Fluid Physics Experiment Facility): No report.

MELFI (Minus Eighty Laboratory Freezer for ISS, NASA): No report.

Microbe-3 (JAXA): “Aki, thank you for performing the 1st session of sampling with the Air Sample Detector and Particle Counter.”

Micro-G Clay (JAXA EPO): Complete.

Miscible Fluids in Microgravity (MFMG): No report.

MISSE-8 (Materials ISS Experiment 8): MISSE-8 is nominal. PASCAL performed nominal commanding that produced IV curves of the solar cells. IV curves are plots of the current versus voltage for solar cells and tell a lot about how these are performing. The SpaceCube experiment is continuing to run code for new radiation hardening by software.

MMA (JAXA/Microgravity Measurement Apparatus): No report.

MPAC/SEED (JAXA): No report.

MSG (Microgravity Science Glovebox, NASA): No report.

MSG-SAME (Microgravity Science Glovebox -Smoke Aerosol Measurement Experiment): No report.

MSPR (Multi-Purpose Small Payload Rack, JAXA): No report.

MSL (Materials Science Laboratory, ESA): Three processed Sample Cartridge Assemblies (SCA’s) have been returned with SpX-D.

MTR-2 (Russian radiation measurements): Passive dosimeters measurements in DC-1 “Pirs”.

MULTIGEN-1: Completed.

MYCO 3 (JAXA): On 9/22, Mike and Satoshi completed sample collection.

MyoLab (JAXA): Completed on 4/20.

NanoRacks (NASA): No report.

NANOSKELETON (Production of High Performance Nanomaterials in Microgravity, JAXA): No report.

NANO STEP (JAXA): Completed run#1 on 9/7. Scientist team was satisfied with the good results.

NEURORAD (JAXA): No report.

NEUROSPAT (ESA/Study of Spatial Cognition, Novelty Processing and Sensorimotor Integration): No report. [During microgravity stay, the human body goes through multitude of physiological changes in order to accommodate to the new environment. As the brain is a master organ where major crucial processes take place, it is fundamental to understand how it manages adaptation for living in Space. One of the main purposes of Neurospat (NES) experiment is to focus on how microgravity environment influences cerebral activity of astronauts aboard ISS. For this, the global electrical activity of the brain of the astronaut is measured thanks to electroencephalogram (EEG) technique, while he or she is executing specific tasks through a computer as if it was a kind of videogame. In practice, the astronaut is wearing a specially equipped cap with passive, gel filled electrodes that are in contact with his/her scalp while he or she is performing the specific tasks that we have designed. These are visual-orientation perception and visuo-motor tracking tasks that may be encountered on a daily basis. The tasks allow the study of 5 cognitive processes: Perception, Attention, Memorization, Decision and Action. Besides there are also task-irrelevant images that are showed to the astronaut in order to assess how well he or she processes novel visual stimuli. The electrodes all over the scalp are linked to sensitive amplifiers that allow us to measure small variations of electrical potential between different regions of the scalp. These signals are in turn used to estimate activity in the cerebral cortex related to the task being performed. Also, they serve to identify the mental processes associated with these tasks and to localize in the brain the sources of the underlying neural activity. After analysis of the data we can better understand whether the novel environment of microgravity accompanied by a multitude of stressors may place an increased load on the cognitive capacity of the human brain and whether the sensory signals and motor responses of astronauts are processed and interpreted differently because a new reference frame.]

NightPod (ESA): No report.

NOA-1/-2 (Nitric Oxide Analyzer, ESA): Complete.

NUTRITION w/REPOSITORY/ProK: No report.

ODK-2 (Onboard Diagnostic Kit 2, JAXA): “Aki, we appreciate you performing DK-MUSCLE-MEAS.”

PADIAC (Pathway Different Activators, ESA): No report.

PADLES (JAXA, Area PADLES 6/7; Passive Area Dosimeter for Lifescience Experiment in Space): “Aki, thank you for the removal of 17 dosimeters (Area PADLES 8) on 9/14.”

PASSAGES (JAXA): No report. [PASSAGES is an experiment about the strategies involved in the perception of the world around us. Seeing correctly the world is necessary to success our gestures, our actions, such as catching a ball, stepping an obstacle on the ground or passing through an opened door. In this experiment, we want to know if the strategies involved on Earth continue to be used when the astronaut is in a weightlessness environment for a long period. To investigate this question, the participant sees 3D scenes on the screen of a laptop such as a video game. The scene is a room with an opening which can vary in width. The task of the participant is to decide if yes or no he or she could pass through the aperture without rotating or scrunching the shoulders. The science team uses typical methods from psychophysics and manipulates several factors to highlight the strategies used by the participant. Then, the science team will compare the performances obtained on ground with those obtained onboard.]

PCDF-PU (Protein Crystallization Diagnostic Facility – Process Unit): No report.

PCG (JAXA, Protein Crystal Growth): Mission completed last week.

PCRF (Protein Crystallization Research Facility) Reconfiguration (JAXA): See PCG.

PLSG (Plant Signaling, NASA/ESA): No report.

PMDIS (Perceptual Motor Deficits in Space): Complete.

POLCA/GRAVIGEN (ESA): Complete.

Portable PFS: The Portable PFS was set-up on 9/10 for the second VO2max / THERMOLAB session completed on 9/11 by Suni.

Pro K: No report.

RadGene & LOH (JAXA): Complete.

RadSilk (JAXA): No report.

Reaction Self Test (RST/Psychomotor Vigilance Self Test on the ISS): “Suni and Aki, thank you for your participation in Reaction Self Test. Your continued efforts are greatly appreciated!”

REBR (Re-Entry Breakup Recorder, JAXA): REBR was able to relay about 11 minutes of the HTV3 re-entry data to the ground sites before splashing into the South Pacific Ocean. This data will be processed in the coming months and REBR appears to have been very successful. The next REBR is scheduled to be placed in the ATV-3 vehicle on Day 268 to collect re-entry data for this vehicle. The HTV3 data set is much more extensive than the HTV2 data set, because this time we continuously recorded data, with no preset time limit. The HTV2 data set covered about 4 minutes; the HTV3 data set covers about 11 minutes. For example, in the HTV3 data, we see temperatures rise rapidly, and then cool down. We see internal pressure dropping rapidly, and then rising again as our altitude decreases. This is all preliminary, and we have much work ahead of us to fully process and interpret the data. We are also excited to compare extensively with HTV2, but that is down the road.

Reversible Figures (ESA): “Suni, you did really great. Your third session went very smoothly: fantastic and keep on going.” [Background: The objective of this study is to understand the relationship between gravity and depth perception. Another objective is to identify the problems associated with depth and distance perception in astronauts with the goal of developing countermeasures to reduce any associated performance alteration. This experiment investigates cases in which what astronauts might think to see, fails to achieve a correct representation of the environment, namely, optical illusions. Ten ambiguous figures, with or without depth cues, are presented to an astronaut in virtual reality goggles. These figures are ambiguous because they can be seen at first sight in two different ways. The figure does not change, but after some time the brain reverses (flip-flops) its interpretation. The astronaut is asked to look closely at each figure and to indicate with a mouse trackball which view he/she sees first, and when the view flip-flops. The interval between the views will be compared between 1g and 0g conditions. In 0g, the astronaut will do the test while free-floating to eliminate all orientation cues. This experiment will be performed three times pre-flight, then up to six times in-flight, and again three times post-flight. The science team will then compare the results of these tests across these gravitational environments. It is expected that the frequency of flip-flops of figures with depth cues will be different in between 0g and 1g, and that an adaptation to long-term exposure to weightlessness, as well as a re-adaptation to Earth gravity, will take place.]

ROALD-2 (Role of Apoptosis in Lymphocyte Depression 2, ESA): No report. [Background: The ROALD-2 experiment studies how the function of T-cells from the immune system are affected by microgravity and spaceflight. T-cells play an important role in controlling the immune systems response to infection. It has previously been shown that the immune response of astronauts can be reduced following spaceflight and it has also been shown that the activation of T-cells in culture is reduced in microgravity. A series of experiments on T-cells and other immune system cells have been previously performed by different scientific teams on Space Shuttle and the ISS over the last 30 years. The data from these individual experiments provides information which together can be used to understand the mechanisms by which gravity or the absence of gravity can affect T-cell function.]

Robonaut (NASA): No report.

RRM (Robotic Refuelling Mission, NASA): In standby mode, awaiting the next task/run, refueling. [The RRM investigation demonstrates and tests the tools, technologies and techniques needed to robotically service and refuel satellites in space, especially satellites not originally designed to be serviced. RRM is expected to reduce risks and lay the foundation for future robotic servicing missions in microgravity.]

RYUTAI Rack (JAXA): On 9/19, MRDL communication check-out was successfully completed as part of Ryutai MRDL T/S. On 9/21, latter part of Ryutai MRDL T/S will be performed.

SAIBO Rack (JAXA): No report.

SAMS/MAMS (Space & Microgravity Acceleration Measurement Systems): No report.

SAMPLE: Complete.

SCaN (Space Communications and Navigation Testbed, NASA): SCAN Testbed continues the checkout of subsystems. The Avionics, Antenna Pointing System, and Software Defined Radios (SDRs) checkouts have been completed. We are now testing the RF subsystem by sending a carrier wave from either the Wallops Ground Station (NEN) or a TDRSS (SN) to our various SDR/antenna combinations. This week we did GD/NEN-LGA and JPL/SN-MGA. [Background: The SCaN Testbed provides an orbiting laboratory on space station for the development of SDR (Software Defined Radio) technology. These systems will allow researchers to conduct a suite of experiments over the next several years, enabling the advancement of a new generation of space communications. The testbed is the first space hardware to provide an experimental laboratory to demonstrate many new capabilities, including new communications, networking and navigation techniques that utilize SDR technology. The SCaN Testbed includes three such radio devices, each with different capabilities. These devices will be used by researchers to advance this technology over the Testbed’s five year planned life in orbit. Two SDRs were developed under cooperative agreements with General Dynamics and Harris Corp., and the third was developed by NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif. JPL also provided the five-antenna system on the exterior of the testbed, used to communicate with NASA’s orbiting communications relay satellites and NASA ground stations across the United States.]

SCOF (Solution Crystallization Observation Facility, JAXA): No report.

SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload, JAXA): Continuing telemetry monitoring.

SHD (Space Headaches, ESA): No report. [Background: The neurologists from Leiden University want to study the question whether the astronauts, while in space, suffer from the headaches. With the help of simple questionnaires the astronauts will register the headache episodes and the eventual accompanying symptoms. The results will hopefully help to characterize the frequency and characteristics of space headache and to develop countermeasure to prevent/minimize headache occurrence during the space flight.]

SHERE II (Shear History Extensional Rheology Experiment II): No report.

SLAMMD (Space Linear Acceleration Mass Measurement Device): No report.

SLEEP (Sleep-Wake Actigraphy & Light Exposure during Spaceflight): No report.

SLICE (Structure & Liftoff In Combustion Experiment): No report. [See under BASS.]

SMILES (JAXA): Continuing telemetry monitoring.

SODI/IVIDIL (Selectable Optical Diagnostics Instrument/Influence of Vibration on Diffusion in Liquids, ESA): No report.

SODI/COLLOID (Selectable Optical Diagnostics Instrument/Colloid): No report.

SODI-DSC (Selectable Optical Diagnostics Instrument/Diffusion & Soret Coefficient, ESA): No report. [Background: Fluids and gases are never at rest. This statement is in apparent contradiction with our experience: when we pour water in a glass and wait until all flows have disappeared and the temperature of the liquid is in equilibrium with that of the room, we see that water appears to be completely at rest. However, if we were able to see the individual molecules of water with a very powerful microscope, we would discover that they are incessantly moving and collide with each other following frantic, random paths even if the liquid appears to be quiescent at naked eye. Scientists are interested in observing and measuring such movements because they reveal important, practical information: how fast does heat propagates in a fluid? How fast do liquid mixtures mix? Such phenomena occur in absence of a macroscopic flow, that is when the fluid appears to be at rest, and are called heat and mass diffusion respectively. While the theoretical prediction of heat and mass diffusion is still quite challenging, its measurement is a standard laboratory practice, but may become extremely difficult or impossible when dealing with mixtures of many liquids, due to the fact that such measurement needs to be carried out when the fluid is quiescent, a condition sometimes impossible to achieve on ground. This is precisely the objective of the SODI DSC experiment carried out on board the International Space Station: the measurement of diffusion in mixtures of liquids. By using very sensitive optical techniques, it will be possible to measure mass diffusion, compare with current theories, and improve our present understanding of how molecules move in liquid mixtures. The results will be used by the large team of scientists involved in the project to try to understand which of the many existing theories for mass diffusion is correctly predicting the experimental behavior.]

SOLAR (Solar Monitoring Observatory, ESA): Sun Visibility Window#57 started around GMT 259-260. Since then SOLSPEC performed the daily Sun and calibration measurements. SolACES was in heated configuration for the 30S undocking and performed only measurements since GMT 263.

SOLO (Sodium Loading in Microgravity): No report.

Space-DRUMS (Space Dynamically Responding Ultrasonic Matrix System): No report.

Space Food (JAXA): No report.

SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite): No report.

SPHINX (SPaceflight of Huvec: an Integrated eXperiment, ESA): No report.

SPICE (Smoke Point In Co-flow Experiment): No report.

SPINAL (Spinal Elongation): No report.

SPRINT: No report.

SS-HDTV (Super Sensitivity High Definition Camera, JAXA): Mission completed last week.

STP-H3 (Space Test Program – Houston 3): All experiments are functional and are in a nominal configuration. MHTEX is currently in a priming operation for the Capillary Pumped Loop (CPL) in preparation for additional testing. VADER continues to characterize the performance of the Aerogel blanket attached to the backside of the experiment. Canary captured data during the 30S undocking event on Day 260 and plans to collect data during the ATV-3 undock event next week. DISC took new images this week and continues to process images that were taken in previous weeks.

SWAB (Characterization of Microorganisms & Allergens in Spacecraft): No report.

TASTE IN SPACE (ESA): No report.

THERMOLAB (ESA): “Thank you, Suni, for collecting also THERMOLAB session#2 data during your VO2max protocol. The data were well received and are being assessed by the science team.”

TRAC (Test of Reaction & Adaptation Capabilities): Planned.

TREADMILL KINEMATICS: “Thanks for performing your 3rd session, Suni. And special thanks for the extra effort in securing the tape markers!”

TRIPLELUX-B (ESA): No report.

ULTRASOUND: Planned.

UMS (Urine Monitoring System (NASA): No report.

VASCULAR (CSA): “We received the VASCULAR Podcast -thanks, Joe, we appreciate this. It will be useful for our outreach program.”

VCAM (Vehicle Cabin Atmosphere Module, NASA): No report.

VESSEL ID System (ESA): Nominal data acquisition with the NorAIS receiver. [Background: As the ISS circles Earth, it has been tracking individual ships crossing the seas beneath. An investigation hosted by ESA in COL module has been testing the viability of monitoring global maritime traffic from the station’s orbit hundreds of kilometers above since June 2010. The ship-detection system being tested is based on the AIS (Automatic Identification System), the marine equivalent of the air traffic control system. Astronauts were instrumental in enabling the COLAIS experiment, which is an in-orbit demonstration project of ESA’s General Support Technology Program. COL was not originally outfitted with VHF antennas to capture the AIS signals; they were installed on the outside of the module during a spacewalk in November 2009, with the remaining piece of hardware, the ERNOBox control computer, installed inside COL along with the NORAIS receiver in May 2010.- The two operational phases with the first receiver from Norway, or NORAIS, which is operated by FFI/Norway, have been extremely successful, with data telemetry received by the N-USOC, in Trondheim, Norway, via ESA’s COL-CC in Germany. Data has been received by NORAIS in almost continuous operation, and all modes of operation have worked extremely well. On a good day, approximately 400,000 ship position reports are received from more than 22,000 different ship identification numbers (Maritime Mobile Service Identity, or MMSI). — The NORAIS Receiver has a sample mode that can collect the raw signal, digitize it and send it to ground for analysis of signal quality, which is proving very helpful in making additional improvements/ refinements to the system. This is used both to investigate the signal environment and to evaluate the performance of new receiver technologies on the ground. Several hundred data sets have been collected and processed with new candidate algorithms for next generation receivers.– From the assessment of these data sets, an updated version of the decoder algorithm has been worked. The development benefits from the investigations of the sampled data and ongoing work in other ESA projects. The firmware was uploaded to the NORAIS Receiver through the station’s communications network. This upgrade #1 (“NORAIS Receiver FPGA firmware v18”), was activated on 1/20/2012.– The on-orbit data of the NORAIS Receiver v18 have been analyzed since and show very good results. The teams are confident in the operation and performance of v18 and have now preliminary results of the comparison of the performance of the upgraded NORAIS Receiver (v18) relative to the version operated prior to the upgrade (v16).– Changes of the signal environment on ISS can influence the number of correctly decoded messages, which makes it important to compare the results of this upgrade to a period running the old algorithm with a similar background level.– The daily averages are calculated for 11 days for both receiver versions. For the upgrade, the period considered for comparison is 1/21-1/31/2012, which are the first 11 days of operation. When selecting the period for the reference data it was important to find a period with the same background signal level as the 11 days with the upgraded NORAIS Receiver. The period from 11/27 – 12/7/2011 was. Even though the two 11 day periods are 45 days apart, the ship traffic should not be very different around the world, except for some regions in the north that may be hampered by sea ice.– The performance has been studied as the average number of decoded messages per day for the current upgrade v18 of the firmware and the original NORAIS Receiver software. The improvement is the ratio of these numbers (so average numbers of messages per day before the upgrade divided by number of messages after the upgrade). The number of messages from ships in various geographic areas shows a variation in the ratio of messages from 1.2 to 2.0, whereas the ratio of MMSI’s ranges from 1.1 to 1.9. The improvement in the Mediterranean is almost a factor of 2.0 in number of messages, and more than 1.6 in number of distinct ships per day. The improvement in other high-traffic zones, at the Gulf of Mexico and East Asia, is even higher.]

VESSEL IMAGING (ESA): No report. [Background: It is known that the ability of blood vessels to vasoconstrict – the ability of the muscular vessel wall to narrow the diameter of the blood vessel – is impaired during and after a human has been in space. “Vessel Imaging” is using the Ultrasound scanner on board the ISS to take images of the five different blood vessels in the lower abdomen and in the legs to study what changes occur to cause the blood vessels to be less able to vasoconstrict. For each vessel, a 5 second scan is performed to observe the blood vessel during several heart beats, followed by a scan where the ultrasound scan-head is tilted to allow a “cut through the blood vessel wall”. The same scans are also performed before flight, and these pre-flight images are used as the baseline to which the in-flight data is compared with. The images are analyzed to detect any changes in the blood vessel wall properties, such as wall thickness, elasticity or structure, changes in the size of the blood vessel or blood flow (volume) while the crewmember is in orbit.]

VIABLE (eValuatIon And monitoring of microBiofiLms insidE the ISS Payload Touch, NASA): No report.

VO2max (NASA): No report.

VLE (Video Lessons ESA): No report.

WAICO #1/#2 (Waving and Coiling of Arabidopsis Roots at Different g-levels; ESA): No report.

YEAST B (ESA): No report.

YOUTUBE SpaceLab: No report.

CEO (Crew Earth Observation): Through 9/17 the ground has received 74 of ISS CEO frames from Expedition 33 for review and cataloging. “We are pleased to report that we have received imagery this week with camera times corresponding to our CEO target request times as follows: Beijing, China Aerosol – 27 frames – target not acquired – request was for high oblique, short lens views – good quality, nadir views with a long lens were acquired instead; Typhoon Sanba – 21 frames – target not acquired. Thank you for your efforts on our payload. Your colorful, nighttime image of Kuwait City was published on the NASA/GSFC Earth Observatory website this past weekend. Your crisp, nicely composed view illustrates both the infrastructure and historical growth patterns of this Persian Gulf capital through both illumination patterns and lighting colors. Nice shot!”

CEO (Crew Earth Observation) targets uplinked for today were Rome, Italy (Capital Cities Collection: “The Eternal City” and capital of Italy [population ~2.7 million] lies just inland from sea on the western coastline of the Italian peninsula. As ISS tracked SE on this mid-morning pass west of the Italian peninsula, the crew was to look left of track for a context view of the Rome metropolitan area), Niwot Ridge Tundra, CO (Long Term Ecological Research Site [LTER]: ISS had a near-nadir view of his target area in midday light with fair weather anticipated. This LTER site is located in north-central Colorado within the alpine areas above 3,000m just west of Boulder. As ISS tracked southeastward over the Colorado Rockies, before it reached the plains to the E, the crew was to aim near nadir and just right of track to try for a detailed mapping of the ridge and its surroundings), Mississippi River Delta Region (ISS had midday pass in fair weather with approach from the NW over the western portion of the Mississippi River Delta. This delta is built up by alluvium, deposited by the Mississippi River as it slows down and enters the Gulf of Mexico, and has caused the coastline to advance gulfward from 15 to 50 miles over the past 5,000 years. CEO staff is looking for detailed shots of the flood basins and wetlands around the delta, as well as detailed imagery of the most southeastern portion of the delta [named “Birdfoot”]), Santa Barbara Coast, CA (LTER Site: This site is located in the coastal zone of southern California near Santa Barbara. It is bounded by the steep east-west trending Santa Ynez Mountains and coastal plain to the north and the unique Northern Channel Islands to the south. Point Conception, where the coast of California returns to a north to south orientation, lays at the western boundary, and the Santa Clara River the eastern boundary. Remotely-sensed data, such as CEO photos, supports studies of the effects of land use and ocean forcing on the processing and transport of nutrients and carbon to giant kelp forests, as well as the role of climate change/variability and disturbance on near-shore population dynamics, community structure, and ecosystem processes. ISS pass approached the coast from the NW in mid-morning light. Clear weather offered an opportunity for detailed mapping views along this dramatic coast), and Chiloe Island, S. Chile (HMS Beagle Site: ISS had a late afternoon pass with the potential for a few clouds over this region. At this time, the crew aimed right of track for this large, rugged and forested island as ISS approached the southern coast of Chile from the NW, trying for context views of the island as a whole. Darwin arrived at this island on June 12, 1834).

ISS Orbit (as of this morning, 8:45am EDT [= epoch])
Mean altitude — 416.5 km
Apogee height — 429.0 km
Perigee height — 404.1 km
Period — 92.90 min.
Inclination (to Equator) — 51.65 deg
Eccentricity — 0.0018317
Solar Beta Angle — 0.0 deg (magnitude bottoming out)
Orbits per 24-hr. day — 15.50
Mean altitude loss in the last 24 hours — 117 m
Revolutions since FGB/Zarya launch (Nov. 98) — 79,252
Time in orbit (station) — 5055 days
Time in orbit (crews, cum.) — 4342 days.

Significant Events Ahead (all dates Eastern Time and subject to change):
————– Inc-33: Three-crew operations ————-
09/25/12 — ATV3 undocking — 6:36pm
09/26/12 — ATV3 deorbit (burn 2) — 10:30pm
10/07/12 — SpaceX-1 launch — 8:34pm
10/xx/12 — Soyuz TMA-06M/32S launch – K.Ford (CDR-34)/O.Novitsky/E.Tarelkin
10/xx/12 — Soyuz TMA-06M/32S docking
————– Inc-33: Six-crew operations ————-
10/31/12 — Progress M-17M/49P launch
10/31/12 — Progress M-17M/49P docking
11/12/12 — Soyuz TMA-05M/31S undock/landing (End of Increment 33)
————– Inc-34: Three-crew operations ————-
12/05/12 — Soyuz TMA-07M/33S launch – C.Hadfield (CDR-35)/T.Mashburn/R.Romanenko
12/07/12 — Soyuz TMA-07M/33S docking
————– Inc-34: Six-crew operations ————-
02/11/13 — Progress M-16M/48P undocking
02/12/13 — Progress M-18M/50P launch
02/14/13 — Progress M-18M/50P docking
03/15/13 — Soyuz TMA-06M/32S undock/landing (End of Increment 34)
————– Inc-35: Three-crew operations ————-
04/02/13 — Soyuz TMA-08M/34S launch – P.Vinogradov (CDR-36)/C.Cassidy/A.Misurkin
04/04/13 — Soyuz TMA-08M/34S docking
04/23/13 — Progress M-18M/50P undock/landing
————– Inc-35: Six-crew operations ————-
05/16/13 — Soyuz TMA-07M/33S undock/landing (End of Increment 35)
————– Inc-36: Three-crew operations ————-
05/29/13 — Soyuz TMA-09M/35S launch – M.Suraev (CDR-37)/K.Nyberg/L.Parmitano
05/31/13 — Soyuz TMA-09M/35S docking
————– Inc-36: Six-crew operations ————-
09/xx/13 — Soyuz TMA-08M/34S undock/landing (End of Increment 36)
————– Inc-37: Three-crew operations ————-
09/xx/13 — Soyuz TMA-10M/36S launch – M.Hopkins/TBD (CDR-38)/TBD
09/xx/13 — Soyuz TMA-10M/36S docking
————– Inc-37: Six-crew operations ————-
11/xx/13 — Soyuz TMA-09M/35S undock/landing (End of Increment 37)
————– Inc-38: Three-crew operations ————-
11/xx/13 — Soyuz TMA-11M/37S launch – K.Wakata (CDR-39)/R.Mastracchio/TBD
11/xx/13 — Soyuz TMA-11M/37S docking
————– Inc-38: Six-crew operations ————-
03/xx/14 — Soyuz TMA-10M/36S undock/landing (End of Increment 38)
————– Inc-39: Three-crew operations ————-

SpaceRef staff editor.