Status Report

NASA ISS On-Orbit Status 05 May 2012

By SpaceRef Editor
May 5, 2012
Filed under , , ,
NASA ISS On-Orbit Status 05 May 2012
NASA ISS On-Orbit Status 5 May 2012

ISS On-Orbit Status 05/05/12

All ISS systems continue to function nominally, except those noted previously or below. Saturday – Crew off duty. Happy Cinco de Mayo!

After breakfast, CDR Kononenko performed the routine inspection of the SM (Service Module) PSS Caution & Warning panel as part of regular Daily Morning Inspection.

FE-6 Pettit conducted the regular (~weekly) inspection & maintenance, as required, of the CGBA-4 (Commercial Generic Bioprocessing Apparatus 4) and CGBA-5 payloads in their ERs (EXPRESS Racks) at Lab O2 & O1, focusing on cleaning the muffler air intakes using gray tape or vacuum cleaner.

The three crewmembers joined in conducting the regular weekly three-hour task of thorough cleaning of their home, including COL (Columbus Orbital Laboratory) and Kibo JPM. [“Uborka”, usually done on Saturdays, includes removal of food waste products, cleaning of compartments with vacuum cleaner, damp cleaning of the SM dining table, other frequently touched surfaces and surfaces where trash is collected, as well as the sleep stations with a standard cleaning solution; also, fan screens and grilles are cleaned to avoid temperature rises. Special cleaning is also done every 90 days on the HEPA (high-efficiency particulate air) bacteria filters in the Lab.]

As part of Uborka house cleaning, Oleg completed regular weekly maintenance inspection & cleaning of fan screens in the FGB (TsV2) plus Group E fan grilles in the SM (VPkhO, FS5, FS6, VP) and the Potok Air Purification System pre-filters in SM & FGB.

The CDR also handled the routine daily servicing of the SOZh system (Environment Control & Life Support System, ECLSS) in the SM. [Regular daily SOZh maintenance consists, among else, of checking the ASU toilet facilities, replacement of the KTO & KBO solid waste containers, replacement of EDV-SV waste water and EDV-U urine containers and filling EDV-SV, KOV (for Elektron), EDV-ZV & EDV on RP flow regulator.]

Don Pettit filled out his weekly FFQ (Food Frequency Questionnaire) on the MEC (Medical Equipment Computer), his 14th. [On the FFQs, USOS astronauts keep a personalized log of their nutritional intake over time on special MEC software. Recorded are the amounts consumed during the past week of such food items as beverages, cereals, grains, eggs, breads, snacks, sweets, fruit, beans, soup, vegetables, dairy, fish, meat, chicken, sauces & spreads, and vitamins. The FFQ is performed once a week to estimate nutrient intake from the previous week and to give recommendations to ground specialists that help maintain optimal crew health. Weekly estimation has been verified to be reliable enough that nutrients do not need to be tracked daily.]

At ~10:10am EDT, André Kuipers activated the MPC (Multi-Protocol Converter) routing to downlink the recording of his Treadmill Kinematics session of yesterday, stopping it at ~12:15pm.

Later, André completed the (approx.) monthly O-OHA (On-Orbit Hearing Assessment) test, his 6th, a 30-min NASA environmental health systems examination to assess the efficacy of acoustic countermeasures, using a special software application on the MEC (Medical Equipment Computer) laptop. [The O-OHA audiography test involves minimum audibility measurements for each ear over a wide range of frequencies (0.25-10 kHz) and sound pressure levels, with the crewmembers using individual-specific Prophonics earphones, new Bose ANC headsets (delivered on 30P) and the SLM (sound level meter). To conduct the testing, the experimenter is supported by special EarQ software on the MEC, featuring an up/down-arrow-operated slider for each test frequency that the crewmember moves to the lowest sound pressure level at which the tone can still be heard. The baseline test is required not later than about Flight Day 14 for each new Expedition and is then generally performed once per month. Note: There has been temporary hearing deficits documented on some U.S. and Russian crewmembers, all of which recovered to pre-mission levels.]

Pettit had another time slot reserved for making entries in his electronic Journal on the personal SSC (Station Support Computer). Today, Don also filled out the mid-Increment questionnaire which is part of the Journal. [Required are three journaling sessions per week.]

At ~8:30am, the crew held the regular WPC (Weekly Planning Conference) with the ground, discussing next week’s “Look-Ahead Plan” (prepared jointly by MCC-H and TsUP-Moscow timeline planners), via S-band/audio, reviewing upcoming activities and any concerns about future on-orbit events.

The crew worked out with their regular 2-hr physical exercise protocol on the CEVIS cycle ergometer with vibration isolation (FE-5), TVIS treadmill with vibration isolation & stabilization (CDR), ARED advanced resistive exerciser (CDR, FE-5, FE-6), and T2/COLBERT advanced treadmill (FE-6). [FE-6 is on the special experimental SPRINT protocol which diverts from the regular 2.5 hrs per day exercise regime and introduces special daily sessions, followed by a USND (Ultrasound) leg muscle self scan in COL. No exercise is being timelined for Fridays. If any day is not completed, Don picks up where he left off, i.e., he would be finishing out the week with his last day of exercise on his off day.]

Tasks listed for Kononenko on the Russian discretionary “time permitting” job for today were –
• A ~30-min. session for Russia’s EKON Environmental Safety Agency, making observations and taking KPT-3 aerial photography of environmental conditions on Earth using the NIKON D3X camera with the RSK-1 laptop, and
• More preparation & downlinking of reportages (written text, photos, videos) for the Roskosmos website to promote Russia’s manned space program (max. file size 500 Mb).

Weekly Science Update (Expedition Thirty-One – Week 1).

2D NANO Template (JAXA): Mission completed last week.

3D SPACE: Complete.

ALTCRISS (Alteino Long Term monitoring of Cosmic Rays on the ISS): Complete.

ALTEA SHIELD (NASA/ASI): No report.

Amine Swingbed (NASA): No report.

AMS-02 (Alpha Magnetic Spectrometer): AMS Payload and Laptop operations are nominal. As of 5/1, the AMS POCC has received data for over 16 Billion particle events.

APEX (Advanced Plant Experiments on Orbit) -Cambium: No report.

APEX-TAGES (Transgenic Arabidopsis Gene Expression System): No report.

Asian Seed 2010 (JAXA): Returned on ULF6.

BASS (Burning and Suppression of Solids, NASA): This week, we performed three successful tests using the previously-burned, 1-cm diameter PMMA (polymethyl methacrylate) sphere. For the first test, ignition was achieved at 5 cm/s flow speed and the flow speed was held constant. A blue flame appeared and transitioned to a sooty envelope flame. The flow was turned off to extinguish the flame, and extinction dynamics were observed. In the second test, the flame was again ignited at 5 cm/s flow and then the flow was reduced to around 2 cm/s resulting in a very large flame standoff distance. The flame was extinguished by turning off the flow. In the last test, the flame was ignited at the low flow speed of around 2 cm/s, and then the flow was turned down even further. The flame maintained an almost spherical shape in the early stages. After several seconds, the flow was turned up to maximum (around 25 cm/s), and the flame became long and quite sooty. In about 20 seconds, the fuel was completely consumed and the flame went out.

BCAT-6 (Binary Colloidal Alloy Test 6): Matt Lynch, science PI for BCAT-6, samples 1 and 2, is saying that the latest round of sound clips and pictures from Don Pettit are “really interesting and really exciting”. Not all these pictures are yet available to us (perhaps half), so when the rest of them come down and are made available, Matt will match the sound descriptions with the associated images, which will enable him to provide more of a science analysis next week. We are especially excited about the “50 micron” particles that Don Pettit spoke about in the sound clips and his discussion mentioning how he was able to capture pictures of them with the camera at select angles. Status: Photos, sound clips, and video with comparison of BCAT-6, samples 1 and 2 just completed; Runs planned: Samples 5, 6, 7, and 6-month photos; and Runs completed: BCAT-6, samples 1 and 2 just run. [Colloids are particles as small as a few tens of nanometers (a thousandth of a thousandth of a millimeter) that are suspended in a medium, usually a liquid or a gas. The name “colloid” comes from the Greek word for “glue”, and expresses very important properties of colloids: when small and light enough, particles can be influenced in their behavior by forces of electromagnetic origin, and make them stick together, or repel each other depending on the configuration. Colloids are widely studied in science because the forces between particles can be controlled and tuned and because particles, while being small enough to be influenced by such forces, are big and slow enough to be seen with a relatively simple and inexpensive laboratory instrument like a microscope. This is why colloids are often studied as model for molecular systems (like standard gases or liquids) where molecules, the individual constituents, are much smaller than colloids and cannot be seen with light. As mentioned, forces between colloids can be tuned giving rise to a rich variety of phenomena. One of them is aggregation, which is when particles stick together and tend to form structures. Among the many ways to induce particle aggregation, one allows to do so by controlling the temperature of the solution in which the particles are immersed, thanks to very weak forces called “critical Casimir forces” that have been predicted more than 30 years ago but just partially verified in experiments. The objective of SODI COLLOID is to measure such forces and produce a controlled aggregation of tiny plastic particles. This would allow to shed light on critical Casimir forces and to make a step towards the fabrication of new nanostructured materials with remarkable optical properties for industrial applications.]

BLB (Biolab, ESA): “Thanks, Don, for BLB LSM3 exchange, the HM Gripper re-installation and the cold spot sponge replacement on 4/30.”

BIORHYTHMS (JAXA, Biological Rhythms): No report.

BISE (CSA, Bodies in the Space Environment): No report.

BISPHOSPHONATES: No report.

BXF-Facility (Boiling eXperiment Facility, NASA): No report.

BXF-MABE (Microheater Array Boiling Experiment, NASA): No report.

BXF-NPBX (Pool Boiling Experiment, NASA): No report.

CARD (Long Term Microgravity Model for Investigating Mechanisms of Heart Disease, ESA): Blood and urine samples of André returned on 28S in the Mini-ECCO cold bag, pending confirmation at time of writing.

CARDIOCOG-2: Complete.

CB (JAXA Clean Bench): No report.

CBEF-2 (JAXA Cell Biology Experiment Facility)/SPACE SEED: No report.

CCISS (Cardiovascular & Cerebrovascular Control on Return from ISS): No report.

CERISE (JAXA): No report.

CCF (Capillary Channel Flow, NASA): No report.

CFE-2 (Capillary Flow Experiment 2, NASA): No report.

CFS-A (Colored Fungi in Space-A, ESA): No report.

CSI-5/CGBA-5 (CGBA Science Insert #5/Commercial Generic Bioprocessing Apparatus 5): No report.

CGBA-2 (Commercial Generic Bioprocessing Apparatus 2): Complete.

CIR (Combustion Integrated Rack), MDCA/Flex: No report.

Commercial (Inc 23&24, JAXA): No report.

Commercial (Inc 25 & 26, JAXA): No report.

CSAC (Chip-Scale Atomic Clock, SPHERES): No report.

CSLM-2 (Coarsening in Solid-Liquid Mixtures 2): No report.

CsPins (JAXA): “Don, thank you very much for a successful on-time start of the experiment.”

CubeLab: No report.

CW/CR (Cell Wall/Resist Wall) in EMCS (European Modular Cultivation System): Complete.

DECLIC-ALI (Device for the Study of Critical Liquids & Crystallization-ALICE-like, CNES/NASA): No report.

DomeGene (JAXA): Complete.

DOSIS (Dose Distribution Inside ISS, ESA): No report.

EarthKAM (Earth Knowledge Acquired by Middle School Students): No report.

EDR (European Drawer Rack, ESA): No report.

EKE (Endurance Capacity by Gas Exchange and Heart Rate Kinetics During Physical Training, ESA): No report.

ELITE-S2 (Elaboratore Immagini Televisive – Space 2): Planned.

EMCS (European Modular Cultivation System): No report.

ENose (Electronic Nose): No report.

EPM (European Physiology Module): No report.

EPO (Educational Payload Operations, NASA) (Eye in the Sky; Sleep 2): No report.

EPO (Educational Payload Operations, NASA) (Sesame Street): No report.

EPO (Educational Payload Operations, NASA) (Kids in Micro-G): No report.

EPO (Educational Payload Operations, NASA) (Earth/Moon/Mars Demo): No report.

EPO (Educational Payload Operations, NASA) (Space Sports): No report.

EPO (Educational Payload Operations, NASA) (ISS Orbit): No report.

EPO (Educational Payload Operations, ESA): No report.

EPO CONVECTIONS (ESA): “No report.

EPO MISSION X (ESA): No report.

EPO Spaceship Earth (ESA): No report.

EPO LES-2 (ESA): No report.

EPO GREENHOUSE (ESA): No report.

EPO 3-min Video (JAXA): No report.

EPO J-Astro Report (JAXA): No report.

EPO Dewey’s Forest (JAXA): Closed out on 3/15.

EPO Space Clothes (JAXA): Complete.

EPO Hiten (Dance, JAXA): No report.

EPO Lego Bricks (NASA, JAXA): No report.

EPO Moon Score (JAXA): No report.

EPO Kibo Kids Tour (JAXA): Complete.

EPO Paper Craft (Origami, JAXA): No report.

EPO Poem (JAXA): No report.

EPO-5 SpaceBottle (Message in a Bottle, JAXA): No report.

EPO-6 Spiral Top 2 (JAXA): No report.

EPO-7 Doctor Demo (JAXA): No report.

EPO-7 Green Tea Preparation (JAXA): No report.

EPO-7 Ink Ball (JAXA): No report.

EPO-7 Video (JAXA):

EPO-7 Try Zero-G (JAXA): No report.

EPO-8 Space Sakura (JAXA): No report.

EPO-8 Space Musical Instruments (JAXA): No report.

ERB-2 (Erasmus Recording Binocular, ESA): [ERB-2 aims are to develop narrated video material for various PR & educational products & events, including a 3D interior station view.] No report.

ETD (Eye Tracking Device): Completed.

FACET-2 (JAXA): No report.

FERULATE (JAXA): No report.

FIR/LMM/CVB (Fluids Integrated Rack / Light Microscopy Module / Constrained Vapor Bubble): No report.

Fish Scales (JAXA): Completed on FD7/ULF-4 and returned on STS-132.

FOAM STABILITY EPO (ESA): No report.

FOCUS: No report.

FSL (Fluid Science Laboratory, ESA): No report.

FWED (Flywheel Exercise Device, ESA): No report.

GENARA-A (Gravity Regulated Genes in Arabidopsis A/ESA): No report.

GEOFLOW-2 (ESA): One remaining no-rotation run to be completed, then GEOFLOW-2 campaign complete! [Background: Everybody is familiar with liquids. In an average day we get to use, handle or drink water or other liquids. And everybody knows how fluids (that is liquids and gases) behave: when subjected to a net force, may be pressure, a temperature difference or gravity, they can move freely. Scientists have been studying how fluids move for centuries, and managed to write mathematical formulas that can describe and predict such movements. Unfortunately, these equations are extremely complex and only approximate solutions are known. As a result, our quantitative understanding of fluid movement is just partial. This is especially true for natural phenomena where the forces can be enormous and unpredictable, like in oceans or in the atmosphere. Or the interior of the earth, where rocks are exposed to pressures and temperatures so incredibly high that they slowly move and adapt their shape. That is, over hundreds of years rocks flow just like a very viscous liquid. Scientists try to study such flows but cannot observe them directly due to the fact that they take place deep beneath the surface of our planet. The only way is to have computers simulating those movements starting from the equations, but how to check whether computers are correct? This is what Geoflow II is trying to answer on board the International Space Station. Geoflow II is a miniature planet that has some of its essential ingredients: a fluid can freely move inside a spherical container that rotates, has temperature differences and has a simulated gravity directed towards the centre just like in a real planet. By taking pictures of the fluid movements, scientists are able to understand the essential characteristics of the flows and determine whether computer simulations are correct or whether they need to be refined and improved towards a better understanding of the elusive movements that take place inside our planet.]

HAIR (JAXA): No report.

HDTV System (JAXA): No report.

Hicari (JAXA): Ground activity: We continued dry run, now temperature reaching 650 degrees centigrade (targeting 1250 degrees centigrade). We will continue until 4/26.

Holter ECG (JAXA): No report.

HQPC (JAXA): Was delivered by 34P.

HREP (HICO/Hyperspectral Imager for the Coastal Ocean & RAIDS/Remote Atmospheric & Ionospheric Detection System/JAXA): HICO has taken 5510 images to-date. The most recent HICO images include part of Australia’s coast, part of the Sea of Azov, part of Germany and Tampa Bay in Florida. RAIDS is collecting secondary Science data including nighttime atmospheric disk photometry, spectra and temperatures. Extreme Ultra Violet airglow spectroscopy and optical contamination studies will also be performed.

HRF-1 (Human Research Facility 1, NASA): No report.

HydroTropi (Hydrotropism & Auxin-Inducible Gene Expression in Roots Grown under Microgravity Conditions/JAXA): No report.

ICE CRYSTAL (JAXA): Complete.

ICV (Integrated Cardiovascular): No report.

IMMUNO (Neuroendocrine & Immune Responses in Humans During & After Long Term Stay at ISS): No report.

INTEGRATED IMMUNE: “Don and André, thank you for your recent support of the Integrated Immune experiment. The samples your provided on 28S are in the process of being analyzed and will go a long way in helping the experiment team address its critical objectives.”

InSPACE-2 (Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions 2): No report.

IRIS (Image Reversal in Space, CSA): No report.

ISS Amateur/Ham Radio: No report.

ISSAC (ISS Agricultural Camera, NASA): No report.

IV Gen (Intravenous Fluids Generation): No report.

JOURNALS (Behavioral Issues Associated with Isolation and Confinement, NASA): No report. [Studies conducted on Earth have shown that analyzing the content of journals and diaries is an effective method for identifying the issues that are most important to a person. The method is based on the reasonable assumption that the frequency that an issue or category of issues is mentioned in a journal reflects the importance of that issue or category to the writer. The tone of each entry (positive, negative, or neutral) and phase of the expedition also are variables of interest. Study results will lead to recommendations for the design of equipment, facilities, procedures, and training to help sustain behavioral adjustment and performance during long-duration space expeditions to the ISS, asteroids, the Moon, Mars, and beyond. Results from this study could help to improve the behavioral performance of people living and working under a variety of conditions here on Earth.]

KID/KUBIK6: No report.

KUBIK 3 (ESA): No report.

LMM/PACE-2 (Light Microscopy Module / Preliminary Advanced Colloids Experiment): No report.

LOCAD-PTS (Lab-on-a-Chip Application Development-Portable Test System): No report.

MAMS (Microgravity Acceleration Measurement System, NASA): The MAMS team is celebrating 11 years of supporting the ISS community. MAMS started ISS operations on May 3, 2001.

Marangoni Exp. (JAXA): No report.

Marangoni DSD – Dynamic Surf (JAXA): Payload name was change from Marangoni DSD to Dynamic Surf.

Marangoni UVP (JAXA): No report.

MARES (Muscle Atrophy Research & Exercise System, ESA/NASA): No report.

Matryoshka-2 (RSA): No report.

MAXI (Monitor of All-sky X-ray Image, JAXA): Continuing telemetry monitoring.

MDCA/Flex-2: This week we continued with MDCA/FLEX-2 Fuel Surrogate test points using 100% propylbenzene (pure) and 50% decane/50% propylbenzene (50/50 mixture). On 4/26, we performed eight successful test points using 100% pure fuel in a standard air mixture (21% oxygen and 79% nitrogen at 1 atm) with fuel droplet diameters ranging from 1.5 mm to 5.0 mm. On 4/30, we performed ten successful test points using the 50/50 mixture fuel in the same standard air mixture with fuel droplet diameters ranging from 1.0 mm to 5.0 mm. These were the last planned test days for these fuels.- Test points using the pure fuel show no indication of the post radiative extinction vapor condensation; however, test points using the 50/50 mixture fuel do exhibit this phenomenon. For both fuels, we observed fairly dense soot “clouds” around the droplets following radiative extinction; these clouds appear similar to the vapor condensation clouds but are much weaker in light intensity and do not show the same growth progression.- Droplets with small initial diameters (less than ~3.0 mm) burn to near completion and are typically marked by “disruptive extinctions,” whereas larger droplets radiatively extinguish and are typically marked by a single flame “oscillation cycle.” This single flame oscillation cycle starts with a flame opening that slowly extends around most of the flame location and then rapidly restores itself just before extinguishing. This behavior is different than tests with previous fuels which often show two to three “oscillation cycles” depending on the atmosphere.- Following a fuel reservoir replacement, we will begin four test point days with 100% decane fuel. The decane tests will complete the first phase of Surrogate Fuel testing. We performed the most recent tests to assess repeatability and to extend the range of initial droplet diameters. We also performed a couple of fiber supported tests to provide quantitative comparison with freely deployed tests in order to assess fiber influences. We have not yet analyzed test results in detail, but early indications suggest a complete set of data that will provide an excellent baseline for surrogate fuel development.

MEIS (Marangoni Experiment for ISS) in JAXA FPEF (Fluid Physics Experiment Facility): No report.

Microbe-2 (JAXA): Sample returned by ULF6.

Micro-G Clay (JAXA EPO): Complete.

MISSE-8 (Materials ISS Experiment 8): MISSE-8 ReflectArray, HyperX and SEUXSE experiments continue with nominal operations. The Communications Interface Box (CIB) has not reset this week so ground controllers are no longer performing the special command procedure that prevent resets of the CIB. PASCAL is performing nominal commanding that produced IV curves of the solar cells. IV curves are plots of the current versus voltage for solar cells and tell a lot about how these are performing. The SpaceCube experiment is running code for new radiation hardening by software.

MMA (JAXA/Microgravity Measurement Apparatus): No report.

MPAC/SEED (JAXA): No report.

MSG-SAME (Microgravity Science Glovebox-Smoke Aerosol Measurement Experiment): No report.

MSPR (Multi Purpose Small Payload Rack, JAXA): No report.

MSL (Materials Science Laboratory, ESA): No report.

MTR-2 (Russian radiation measurements): Passive dosimeters measurements in DC-1 “Pirs”.

MULTIGEN-1: Completed.

MYCO 3 (JAXA): On 9/22, Mike and Satoshi completed sample collection.

MyoLab (JAXA): Completed on 4/20.

NANOSKELETON (Production of High Performance Nanomaterials in Microgravity, JAXA): No report.

NEURORAD (JAXA): No report.

NEUROSPAT (ESA/Study of Spatial Cognition, Novelty Processing and Sensorimotor Integration): No report. [During microgravity stay, the human body goes through multitude of physiological changes in order to accommodate to the new environment. As the brain is a master organ where major crucial processes take place, it is fundamental to understand how it manages adaptation for living in Space. One of the main purposes of Neurospat (NES) experiment is to focus on how microgravity environment influences cerebral activity of astronauts aboard ISS. For this, the global electrical activity of the brain of the astronaut is measured thanks to electroencephalogram (EEG) technique, while he or she is executing specific tasks through a computer as if it was a kind of videogame. In practice, the astronaut is wearing a specially equipped cap with passive, gel filled electrodes that are in contact with his/her scalp while he or she is performing the specific tasks that we have designed. These are visual-orientation perception and visuo-motor tracking tasks that may be encountered on a daily basis. The tasks allow the study of 5 cognitive processes: Perception, Attention, Memorization, Decision and Action. Besides there are also task-irrelevant images that are showed to the astronaut in order to assess how well he or she processes novel visual stimuli. The electrodes all over the scalp are linked to sensitive amplifiers that allow us to measure small variations of electrical potential between different regions of the scalp. These signals are in turn used to estimate activity in the cerebral cortex related to the task being performed. Also, they serve to identify the mental processes associated with these tasks and to localize in the brain the sources of the underlying neural activity. After analysis of the data we can better understand whether the novel environment of microgravity accompanied by a multitude of stressors may place an increased load on the cognitive capacity of the human brain and whether the sensory signals and motor responses of astronauts are processed and interpreted differently because a new reference frame.]

NightPod (ESA): NightPod images have been presented in a news blog on the ESA PromISSe website: http://blogs.esa.int/promisse/2012/04/05/nightpod/

NOA-1/-2 (Nitric Oxide Analyzer, ESA): Complete.

NUTRITION w/REPOSITORY/ProK: No report.

ODK (Onboard Diagnostic Kit, JAXA): No report.

PACE-2 (Preliminary Advanced Colloids Experiment 2, NASA): (please see under FIR and LMM/PACE-2.

PADIAC (Pathway Different Activators, ESA): No report.

PADLES (JAXA, Area PADLES 6/7; Passive Area Dosimeter for Lifescience Experiment in Space): Mission completed last week. The 17 dosimeters were returned on 28S.

PASSAGES (JAXA): No report. [PASSAGES is an experiment about the strategies involved in the perception of the world around us. Seeing correctly the world is necessary to success our gestures, our actions, such as catching a ball, stepping an obstacle on the ground or passing through an opened door. In this experiment, we want to know if the strategies involved on Earth continue to be used when the astronaut is in a weightlessness environment for a long period. To investigate this question, the participant sees 3D scenes on the screen of a laptop such as a video game. The scene is a room with an opening which can vary in width. The task of the participant is to decide if yes or no he or she could pass through the aperture without rotating or scrunching the shoulders. The science team uses typical methods from psychophysics and manipulates several factors to highlight the strategies used by the participant. Then, the science team will compare the performances obtained on ground with those obtained onboard.]

PCDF-PU (Protein Crystallization Diagnostic Facility – Process Unit): No report.

PCG (JAXA, Protein Crystal Growth): Mission completed last week.

PCRF (Protein Crystallization Research Facility) Reconfiguration (JAXA): See PCG.

PLSG (Plant Signaling, NASA/ESA): No report.

PMDIS (Perceptual Motor Deficits in Space): Complete.

POLCA/GRAVIGEN (ESA): Complete.

Portable PFS: Used for VO2max / THERMOLAB / EKE sessions.

Pro K: No report.

RadGene & LOH (JAXA): Complete.

RadSilk (JAXA): No report.

Reaction Self Test (RST/Psychomotor Vigilance Self Test on the ISS): “Don and André, thank you for your participation in Reaction Self Test, your efforts are greatly appreciated! Thank you for the photos during your session this week, the photos provide valuable insight for the principal investigator team.”

ROALD-2 (Role of Apoptosis in Lymphocyte Depression 2, ESA): ROALD-2 experiment containers returned on 28S and confirmed arrived at science team lab. Also received confirmation that all experiment containers pistons were activated correctly on-orbit. [Background: The ROALD-2 experiment studies how the function of T-cells from the immune system are affected by microgravity and spaceflight. T-cells play an important role in controlling the immune systems response to infection. It has previously been shown that the immune response of astronauts can be reduced following spaceflight and it has also been shown that the activation of T-cells in culture is reduced in microgravity. A series of experiments on T-cells and other immune system cells have been previously performed by different scientific teams on Space Shuttle and the ISS over the last 30 years. The data from these individual experiments provides information which together can be used to understand the mechanisms by which gravity or the absence of gravity can affect T-cell function.]

Robonaut (NASA): No report.

RYUTAI Rack (JAXA): No report.

SAIBO Rack (JAXA): No report.

SAMS/MAMS (Space & Microgravity Acceleration Measurement Systems): No report.

SAMPLE: Complete.

SCOF (Solution Crystallization Observation Facility, JAXA): No report.

SEDA-AP (Space Environment Data Acquisition Equipment-Attached Payload, JAXA): Continuing telemetry monitoring.

SHD (Space Headaches, ESA): “Thanks, André, for filling in your 18th weekly questionnaire on 4/27.” [Background: The neurologists from Leiden University want to study the question whether the astronauts, while in space, suffer from the headaches. With the help of simple questionnaires the astronauts will register the headache episodes and the eventual accompanying symptoms. The results will hopefully help to characterize the frequency and characteristics of space headache and to develop countermeasure to prevent/minimize headache occurrence during the space flight.]

SHERE II (Shear History Extensional Rheology Experiment II): No report.

SLAMMD (Space Linear Acceleration Mass Measurement Device): No report.

SLEEP (Sleep-Wake Actigraphy & Light Exposure during Spaceflight): No report.

SLICE (Structure & Liftoff In Combustion Experiment): No report. [See under BASS.]

SMILES (JAXA): Continuing telemetry monitoring.

SODI/IVIDIL (Selectable Optical Diagnostics Instrument/Influence of Vibration on Diffusion in Liquids, ESA): No report.

SODI/COLLOID (Selectable Optical Diagnostics Instrument/Colloid): No report.

SODI-DSC (Selectable Optical Diagnostics Instrument/Diffusion & Soret Coefficient, ESA): Two SODI flash disks (one containing data of SODI COLLOID-2 runs (full) and one of DSC runs (partial)) returned on 28S pending confirmation. [Background: Fluids and gases are never at rest. This statement is in apparent contradiction with our experience: when we pour water in a glass and wait until all flows have disappeared and the temperature of the liquid is in equilibrium with that of the room, we see that water appears to be completely at rest. However, if we were able to see the individual molecules of water with a very powerful microscope, we would discover that they are incessantly moving and collide with each other following frantic, random paths even if the liquid appears to be quiescent at naked eye. Scientists are interested in observing and measuring such movements because they reveal important, practical information: how fast does heat propagates in a fluid? How fast do liquid mixtures mix? Such phenomena occur in absence of a macroscopic flow, that is when the fluid appears to be at rest, and are called heat and mass diffusion respectively. While the theoretical prediction of heat and mass diffusion is still quite challenging, its measurement is a standard laboratory practice, but may become extremely difficult or impossible when dealing with mixtures of many liquids, due to the fact that such measurement needs to be carried out when the fluid is quiescent, a condition sometimes impossible to achieve on ground. This is precisely the objective of the SODI DSC experiment carried out on board the International Space Station: the measurement of diffusion in mixtures of liquids. By using very sensitive optical techniques, it will be possible to measure mass diffusion, compare with current theories, and improve our present understanding of how molecules move in liquid mixtures. The results will be used by the large team of scientists involved in the project to try to understand which of the many existing theories for mass diffusion is correctly predicting the experimental behavior.]

SOLAR (Solar Monitoring Observatory, ESA): Sun Visibility Window #52 started on 4/19. SOLSPEC calibrations and measurements were performed. SOLACES was in heating mode for most of the window for all events with thrusters to protect the instrument from contamination. Therefore only 1 SOLACES measurement script was performed. This measurement session was impacted (~40% loss estimated for this measurement) by a sun sensor glitch during LOS. Sun Visibility Window #52 ended on 5/2.

SOLO (Sodium Loading in Microgravity): “SOLO blood and urine samples of 3 subjects returned on 28S in the Mini-ECCO cold bag, pending confirmation at time of writing.

Space-DRUMS (Space Dynamically Responding Ultrasonic Matrix System): No report.

Space Food (JAXA): No report.

SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite): No report.

SPHINX (SPaceflight of Huvec: an Integrated eXperiment, ESA): No report.

SPICE (Smoke Point In Co-flow Experiment): No report.

SPINAL (Spinal Elongation): No report.

SPRINT: No report.

SS-HDTV (Super Sensitivity High Definition Camera, JAXA): Mission completed last week.

STP-H3 (Space Test Program – Houston 3): The MHTEX Capillary Pumped Loop evaporators are currently repriming in preparation for further tests and steady state operations. VADER continues to characterize the performance of the Aerogel blanket attached to the backside of the experiment. Canary collected data from the 28S undocking on 4/27. Canary plans to collect data during the ATV reboost on 5/4. DISC has taken more imagery this week and is processing images that were taken in previous weeks.

SWAB (Characterization of Microorganisms & Allergens in Spacecraft): No report.

TASTE IN SPACE (ESA): No report.

THERMOLAB (ESA): “Thanks, André, for your 5th data collection for THERMOLAB as part of your VO2max protocol on 4/26. The data have been downlinked and passed on to the science team, awaiting their feedback.”

TRAC (Test of Reaction & Adaptation Capabilities): Planned.

TREADMILL KINEMATICS: “Thanks, André, for your 3rd session!”

TRIPLELUX-B (ESA): No report.

ULTRASOUND: Planned.

UMS (Urine Monitoring System (NASA): No report.

VASCULAR (CSA): “No report.

VCAM (Vehicle Cabin Atmosphere Module, NASA): No report.

VESSEL ID System (ESA): Nominal data acquisition with the NorAIS receiver. [Background: As the ISS circles Earth, it has been tracking individual ships crossing the seas beneath. An investigation hosted by ESA in COL module has been testing the viability of monitoring global maritime traffic from the station’s orbit hundreds of kilometers above since June 2010. The ship-detection system being tested is based on the AIS (Automatic Identification System), the marine equivalent of the air traffic control system. Astronauts were instrumental in enabling the COLAIS experiment, which is an in-orbit demonstration project of ESA’s General Support Technology Program. COL was not originally outfitted with VHF antennas to capture the AIS signals; they were installed on the outside of the module during a spacewalk in November 2009, with the remaining piece of hardware, the ERNOBox control computer, installed inside COL along with the NORAIS receiver in May 2010.- The two operational phases with the first receiver from Norway, or NORAIS, which is operated by FFI/Norway, have been extremely successful, with data telemetry received by the N-USOC, in Trondheim, Norway, via ESA’s COL-CC in Germany. Data has been received by NORAIS in almost continuous operation, and all modes of operation have worked extremely well. On a good day, approximately 400,000 ship position reports are received from more than 22,000 different ship identification numbers (Maritime Mobile Service Identity, or MMSI).– The NORAIS Receiver has a sample mode that can collect the raw signal, digitize it and send it to ground for analysis of signal quality, which is proving very helpful in making additional improvements/ refinements to the system. This is used both to investigate the signal environment and to evaluate the performance of new receiver technologies on the ground. Several hundred data sets have been collected and processed with new candidate algorithms for next generation receivers.– From the assessment of these data sets, an updated version of the decoder algorithm has been worked. The development benefits from the investigations of the sampled data and ongoing work in other ESA projects. The firmware was uploaded to the NORAIS Receiver through the station’s communications network. This upgrade #1 (“NORAIS Receiver FPGA firmware v18”), was activated on 1/20/2012.– The on-orbit data of the NORAIS Receiver v18 have been analyzed since and show very good results. The teams are confident in the operation and performance of v18 and have now preliminary results of the comparison of the performance of the upgraded NORAIS Receiver (v18) relative to the version operated prior to the upgrade (v16).– Changes of the signal environment on ISS can influence the number of correctly decoded messages, which makes it important to compare the results of this upgrade to a period running the old algorithm with a similar background level.– The daily averages are calculated for 11 days for both receiver versions. For the upgrade, the period considered for comparison is 1/21-1/31/2012, which are the first 11 days of operation. When selecting the period for the reference data it was important to find a period with the same background signal level as the 11 days with the upgraded NORAIS Receiver. The period from 11/27 – 12/7/2011 was. Even though the two 11 day periods are 45 days apart, the ship traffic should not be very different around the world, except for some regions in the north that may be hampered by sea ice.– The performance has been studied as the average number of decoded messages per day for the current upgrade v18 of the firmware and the original NORAIS Receiver software. The improvement is the ratio of these numbers (so average numbers of messages per day before the upgrade divided by number of messages after the upgrade). The number of messages from ships in various geographic areas shows a variation in the ratio of messages from 1.2 to 2.0, whereas the ratio of MMSI’s ranges from 1.1 to 1.9. The improvement in the Mediterranean is almost a factor of 2.0 in number of messages, and more than 1.6 in number of distinct ships per day. The improvement in other high-traffic zones, at the Gulf of Mexico and East Asia, is even higher.]

VESSEL IMAGING (ESA): “Thanks André for a smooth second VESSEL IMAGING scan session on 5/3! The science team confirmed good images.” ” [Background: It is known that the ability of blood vessels to vasoconstrict – the ability of the muscular vessel wall to narrow the diameter of the blood vessel – is impaired during and after a human has been in space. “Vessel Imaging” is using the Ultrasound scanner on board the ISS to take images of the five different blood vessels in the lower abdomen and in the legs to study what changes occur to cause the blood vessels to be less able to vasoconstrict. For each vessel, a 5 second scan is performed to observe the blood vessel during several heart beats, followed by a scan where the ultrasound scan-head is tilted to allow a “cut through the blood vessel wall”. The same scans are also performed before flight, and these pre-flight images are used as the baseline to which the in-flight data is compared with. The images are analyzed to detect any changes in the blood vessel wall properties, such as wall thickness, elasticity or structure, changes in the size of the blood vessel or blood flow (volume) while the crewmember is in orbit.]

VIABLE (eValuatIon And monitoring of microBiofiLms insidE the ISS Payload Touch, NASA): No report.

VO2max (NASA): No report.

VLE (Video Lessons ESA): No report.

WAICO #1/#2 (Waving and Coiling of Arabidopsis Roots at Different g-levels; ESA): No report.

YEAST B (ESA): No report.

YOUTUBE SpaceLab: No report.

CEO (Crew Earth Observation): “Welcome to the crew of Expedition 31 from CEO! We look forward to assisting you in any way we can to achieve success with our payload. Please don’t hesitate to ask questions or request us to provide further feedback on your efforts. Through 4/24 the ground has received 223,609 of ISS CEO frames from Expedition 30 for review and cataloging. Soon we expect to start receiving imagery from your Expedition as well. We are pleased to report that we have received imagery with times corresponding to our CEO target request times as follows: Urumqi, China – 6 frames – under evaluation; Buenos Aires, Argentina – 31 frames – under evaluation; Mt. Kilimanjaro, Tanzania – 3 frames – under evaluation; Lake Poopo, Bolivia, 10 frames – under evaluation; and San Marino, San Marino – under evaluation. Thank you for your efforts to acquire our targets. Your dramatic view of a White Sands National Monument Dust Storm, New Mexico, USA was published on the NASA/FSFC Earth Observatory website this past weekend. Your photo is an excellent visual of wind erosion at work in an arid area where evaporite material has been left exposed in a large ephemeral lakebed. Nice catch!”

CEO (Crew Earth Observation) targets uplinked for today were Valletta, Malta (WORLD CAPITALS COLLECTION SITE: The Maltese islands of Gozo and Malta in the central Mediterranean Sea lie about 100 miles south of the large island of Sicily. The capital city of Valletta with a population of just over 6,000 is located on the north coast of the larger island of Malta. As ISS tracked northeastward over the Mediterranean in fair weather, the crew was to aim the camera just left of track for this target), Moscow, Russia (WORLD CAPITALS COLLECTION SITE: The Russian capital of 11.5 million is located at approximately 55.8N and lies well left of any ISS orb tracks. As ISS tracked eastward in fair weather, the crew was to shoot obliquely left of track for this sprawling urban area), San Marino, San Marino (WORLD CAPITALS COLLECTION SITE: ISS had a near-nadir pass in fair weather over the tiny capital city of this microstate within the target area with its approach from the NW. As it approached the coast of northern Italy, the crew was to begin a mapping strip to acquire useful views that they probably were not able to distinguish for themselves. The Republic itself is land-locked and is located about 20 miles SW of the Italian coastal city of Rimini. Best visual cues are Rimini’s small but prominent bay and a light-toned river which reaches the sea at this point), Jornada Basin, New Mexico (LONG TERM ENVIRONMENTAL RESEARCH (LTER) SITE: This site is devoted to the causes and consequences of desertification. It is located in the northern Chihuahuan Desert just NE of Las Cruces, New Mexico. ISS had a clear weather pass with this target just left of track as it approached from the SW. Trying for a detailed mapping strip across this target area), and Konza Prairie, Kansas (LTER SITE (this target is located in the Flint Hills of northeastern Kansas. The vegetation is primarily native tall grass prairie. Today ISS had a nadir pass in clear weather with approach from the SW. Trying for a detailed mapping strip across the heart of this broad, indistinct target area. ISS imagery will help in the study of the effects of fire, grazing and climate variability as well as help to document the grassland ecosystems).

ISS Orbit (as of this morning, 9:36am EDT [= epoch])
Mean altitude – 399.5 km
Apogee height – 406.6 km
Perigee height – 392.3 km
Period — 92.55 min.
Inclination (to Equator) — 51.64 deg
Eccentricity — 0.0010541
Solar Beta Angle — -28.3 deg (magnitude increasing)
Orbits per 24-hr. day — 15.56
Mean altitude loss in the last 24 hours — 65 m
Revolutions since FGB/Zarya launch (Nov. 98) — 77,137
Time in orbit (station) — 4915 days
Time in orbit (crews, cum.) — 4202 days

Significant Events Ahead (all dates Eastern Time and subject to change):
————–Three-crew operations————-
05/15/12 — Soyuz TMA-04M/30S launch – G.Padalka (CDR-32)/J.Acaba/S.Revin
05/17/12 — Soyuz TMA-04M/30S docking (MRM2)
05/19/12 — SpaceX Dragon launch
————–Six-crew operations—————-
07/01/12 — Soyuz TMA-03M/29S undock/landing (End of Increment 31)
————–Three-crew operations————-
07/15/12 — Soyuz TMA-05M/31S launch – S.Williams (CDR-33)/Y.Malenchenko/A.Hoshide
07/17/12 — Soyuz TMA-05M/31S docking
07/20/12 — HTV3 launch (~10:18pm EDT)
07/22/12 — Progress M-15M/47P undock
07/24/12 — Progress M-15M/47P re-docking
07/30/12 — Progress M-15M/47P undocking/deorbit
07/31/12 — Progress M16M/48P launch
08/02/12 — Progress M16M/48P docking
————–Six-crew operations—————-
09/17/12 — Soyuz TMA-04M/30S undock/landing (End of Increment 32)
————–Three-crew operations————-
10/15/12 — Soyuz TMA-06M/32S launch – K.Ford (CDR-34)/O.Novitskiy/E.Tarelkin
10/17/12 — Soyuz TMA-06M/32S docking
————–Six-crew operations————-
11/01/12 — Progress M-17M/49P launch
11/03/12 — Progress M-17M/49P docking
11/12/12 — Soyuz TMA-05M/31S undock/landing (End of Increment 33)
————–Three-crew operations————-
12/05/12 — Soyuz TMA-07M/33S launch – C.Hadfield (CDR-35)/T.Mashburn/R.Romanenko
12/07/12 — Soyuz TMA-07M/33S docking
————–Six-crew operations————-
12/26/12 — Progress M-18M/50P launch
12/28/12 — Progress M-18M/50P docking
03/19/13 — Soyuz TMA-06M/32S undock/landing (End of Increment 34)
————–Three-crew operations————-
04/02/13 — Soyuz TMA-08M/34S launch – P.Vinogradov (CDR-36)/C.Cassidy/A.Misurkin
04/04/13 — Soyuz TMA-08M/34S docking
————–Six-crew operations————-
05/16/13 — Soyuz TMA-07M/33S undock/landing (End of Increment 35)
————–Three-crew operations————-
05/29/13 — Soyuz TMA-09M/35S launch – M.Suraev (CDR-37)/K.Nyberg/L.Parmitano
05/31/13 — Soyuz TMA-09M/35S docking
————–Six-crew operations————-
09/xx/13 — Soyuz TMA-08M/34S undock/landing (End of Increment 36)
————–Three-crew operations————-
09/xx/13 — Soyuz TMA-10M/36S launch – M.Hopkins/TBD (CDR-38)/TBD
09/xx/13 — Soyuz TMA-10M/36S docking
————–Six-crew operations————-
11/xx/13 — Soyuz TMA-09M/35S undock/landing (End of Increment 37)
————–Three-crew operations————-
11/xx/13 — Soyuz TMA-11M/37S launch – K.Wakata (CDR-39)/R.Mastracchio/TBD
11/xx/13 — Soyuz TMA-11M/37S docking
————–Six-crew operations————-
03/xx/14 — Soyuz TMA-10M/36S undock/landing (End of Increment 38)
————–Three-crew operations————-

SpaceRef staff editor.