NASA Hubble Space Telescope Daily Report #5182
HUBBLE SPACE TELESCOPE – Continuing to Collect World Class Science
DAILY REPORT #5182
PERIOD COVERED: 5am September 15 – 5am September 16, 2010 (DOY 258/09:00z-259/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
12407 – GSAcq(2,1,1) at 259/02:27:06z and REAcq(2,1,1) at 259/03:54:49z both failed due to search radius limit exceeded on FGS2
Observations affected: WFC3 90 proposal ID#12234; STIS 67 proposal ID#11999.
HSTAR FOR DOY 242:
12404 – GSAcq(1,2,1) at 242/15:42:17z initially received a scan step limit exceeded flag on FGS1. The second attempt was successful and the acquisition succeeded.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 12 11
FGS REAcq 05 04
OBAD with Maneuver 06 06
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
ACS/WFC 11996
CCD Daily Monitor (Part 3)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November 2010.
ACS/WFC 12210
SLACS for the Masses: Extending Strong Lensing to Lower Masses and Smaller Radii
Strong gravitational lensing provides the most accurate possible measurement of mass in the central regions of early-type galaxies (ETGs). We propose to continue the highly productive Sloan Lens ACS (SLACS) Survey for strong gravitational lens galaxies by observing a substantial fraction of 135 new ETG gravitational-lens candidates with HST-ACS WFC F814W Snapshot imaging. The proposed target sample has been selected from the seventh and final data release of the Sloan Digital Sky Survey, and is designed to complement the distribution of previously confirmed SLACS lenses in lens-galaxy mass and in the ratio of Einstein radius to optical half-light radius. The observations we propose will lead to a combined SLACS sample covering nearly two decades in mass, with dense mapping of enclosed mass as a function of radius out to the half-light radius and beyond. With this longer mass baseline, we will extend our lensing and dynamical analysis of the mass structure and scaling relations of ETGs to galaxies of significantly lower mass, and directly test for a transition in structural and dark-matter content trends at intermediate galaxy mass. The broader mass coverage will also enable us to make a direct connection to the structure of well-studied nearby ETGs as deduced from dynamical modeling of their line-of-sight velocity distribution fields. Finally, the combined sample will allow a more conclusive test of the current SLACS result that the intrinsic scatter in ETG mass-density structure is not significantly correlated with any other galaxy observables. The final SLACS sample at the conclusion of this program will comprise approximately 130 lenses with known foreground and background redshifts, and is likely to be the largest confirmed sample of strong-lens galaxies for many years to come.
COS/NUV/FUV/STIS/CCD/MA1 11692
The LMC as a QSO Absorption Line System
We propose to obtain high resolution, high signal-to-noise observations of QSOs behind the Large Magellanic Clouds. These QSOs are situated beyond the star forming disk of the galaxy, giving us the opportunity to study the distribution of metals and energy in regions lacking significant star formation. In particular, we will derive the metallicities and study the ionization characteristics of LMC gas at impact parameters 3-17 kpc. We will compare our results with high-z QSO absorption line systems.
STIS/CCD 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
STIS/CCD 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
STIS/CCD 11999
JWST Calibration from a Consistent Absolute Calibration of Spitzer & Hubble
Recently, Gordon, Bohlin, et al. submitted a successful Spitzer proposal for cross calibration of HST and Spitzer. The cross-calibration targets are stars in three categories: WDs, A-stars, and G-stars. Traditionally, IR flux standards are extrapolations of stellar models that are tied to absolute fluxes at shorter wavelengths. HST absolute flux standards are among the best available with a solid basis that uses pure hydrogen models of hot WD stars for the SED slopes and is tied to Vega at 5556A via precise Landolt V-band photometry. Consistently matching models to our three categories of HST observations along with Spitzer photometry and the few existing absolute IR flux determinations will provide a solid basis for JWST flux calibration over its 0.8-30micron range. The goal of this proposal is to complete the HST observations of the set of HST/Spitzer cross-calibration stars. Using a variety of standard stars with three different spectral types will ensure that the final calibration is not significantly affected by systematic uncertainties.
STIS/CCD/MA 11668
Cosmo-chronometry and Elemental Abundance Distribution of the Ancient Star HE1523-0901
We propose to obtain near-UV HST/STIS spectroscopy of the extremely metal-poor, highly r-process-enhanced halo star HE 1523-0901, in order to produce the most complete abundance distribution of the heaviest stable elements, including platinum, osmium, and lead. These HST abundance data will then be used to estimate the initial abundances of the long-lived radioactive elements thorium and uranium, and by comparison with their observed abundances, enable an accurate age determination of this ancient star. The use of radioactive chronometers in stars provides an independent lower limit on the age of the Galaxy, which can be compared with alternative limits set by globular clusters and by analysis from WMAP. Our proposed observations of HE1523-0901 will also provide significant new information about the early chemical history of the Galaxy, specifically, the nature of the first generations of stars and the types of nucleosynthetic processes that occurred at the onset of Galactic chemical evolution.
WFC3/ACS/IR 11840
Identifying the Host Galaxies for Optically Dark Gamma-Ray Bursts
We propose to use the high spatial resolution of Chandra to obtain precise positions for a sample of Gamma-Ray Bursts (GRBs) with no optical afterglows, where the optical light is suppressed relative to the X-ray flux. These bursts are likely to be highly obscured and may have different environments from the optically bright GRBs. Our Chandra observations will (unlike Swift XRT positions) allow for the unique identification of a host galaxy. To locate these host galaxies we will follow up our Chandra positions with deep optical and IR observations with HST. The ultimate aim is to understand any differences between the host galaxies of optically dark and bright GRBs, and how these affect the use of GRBs as tracers of starformation and galaxy evolution at high redshift.
WFC3/IR 12265
Determining the Physical Nature of a Unique Giant Lya Emitter at z=6.595
We propose deep WFC3/IR imaging for a giant Lya emitter (LAE) with a Keck spectroscopic redshift of z=6.595 discovered by extensive narrow-band imaging with Subaru in the SXDS-UKIDSS/UDS field. This remarkable object is unique in many respects including its large stellar mass and luminous nebula which extends over 17 kpc; no equivalent source has been found in other surveys. The nature of this rare object is unclear. Fundamental to progress is determining the origin of star formation in such an early massive object; if the age of the stellar population is short we are likely witnessing a special moment in the formation history of a massive galaxy. The heating source for the nebula is also unclear; options include intense star formation, the infall of cold gas onto a dark halo or shock heating from a merger. We will take deep broad-band (F125W and F160W) images and an intermediate-band (F098M) image which will be analyzed in conjunction with ultra-deep IRAC 3.6 and 4.5 micron data being taken by the Spitzer/SEDS project. These data will enable us to constrain the star formation rate and stellar age. Moreover, the UV continuum morphology and Lya-line distribution will be investigated for evidence of a major merger, cold accretion, or hot bubbles associated with outflows. We will address the physical origin of the remarkable object observed at an epoch where massive galaxies are thought to begin their assembly.
WFC3/IR 12307
A public SNAPSHOT Survey of Gamma-ray Burst Host Galaxies
We propose to conduct a public infrared survey of the host galaxies of Swift selected gamma-ray bursts (GRBs) at z<3. By obtaining deep, diffraction limited imaging in the IR we will complete detections for the host galaxies, and in concert with our extensive ground based afterglow and host programmes will compile a detailed catalog of the properties of high-z galaxies selected by GRBs. In particular these observations will enable us to study the colours, luminosities and morphologies of the galaxies. This in turn informs studies of the nature of the progenitors and the role of GRBs as probes of star formation across cosmic history. Ultimately it provides a product of legacy value which will greatly complement further studies with next generation facilities such as ALMA and JWST. WFC3/IR/S/C 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS). WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS 11907 UVIS Cycle 17 Contamination Monitor The UV throughput of WFC3 during Cycle 17 is monitored via weekly standard star observations in a subset of key filters covering 200-600nm and F606W, F814W as controls on the red end. The data will provide a measure of throughput levels as a function of time and wavelength, allowing for detection of the presence of possible contaminants. WFC3/UVIS 11908 Cycle 17: UVIS Bowtie Monitor Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie- shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone. WFC3/UVIS 11912 UVIS Internal Flats This proposal will be used to assess the stability of the flat field structure for the UVIS detector throughout the 15 months of Cycle 17. The data will be used to generate on-orbit updates for the delta-flat field reference files used in the WFC3 calibration pipeline, if significant changes in the flat structure are seen. WFC3/UVIS 11914 UVIS Earth Flats This program is an experimental path finder for Cycle 18 calibration. Visible-wavelength flat fields will be obtained by observing the dark side of the Earth during periods of full moon illumination. The observations will consist of full-frame streaked WFC3 UVIS imagery: per 22- min total exposure time in a single “dark-sky” orbit, we anticipate collecting 7000 e/pix in F606W or 4500 e/pix in F814W. To achieve Poisson S/N > 100 per pixel, we require at least 2 orbits of F606W and 3 orbits of F814W.
For UVIS narrowband filters, exposures of 1 sec typically do not saturate on the sunlit Earth, so we will take sunlit Earth flats for three of the more-commonly used narrowband filters in Cycle 17 plus the also-popular long-wavelength quad filters, for which we get four filters at once.
Why not use the Sunlit Earth for the wideband visible-light filters? It is too bright in the visible for WFC3 UVIS minimum exposure time of 0.5 sec. Similarly, for NICMOS the sunlit-Earth is too bright which saturates the detector too quickly and/or induces abnormal behaviors such as super-shading (Gilmore 1998, NIC 098-011). In the narrowband visible and broadband near- UV its not too bright (predictions in Cox et al. 1987 “Standard Astronomical Sources for HST: 6. Spatially Flat Fields.” and observations in ACS Program 10050).
Other possibilities? Cox et al.’s Section II.D addresses many other possible sources for flat fields, rejecting them for a variety of reasons. A remaining possibility would be the totally eclipsed moon. Such eclipses provide approximately 2 hours (1 HST orbit) of opportunity per year, so they are too rare to be generically useful. An advantage of the moon over the Earth is that the moon subtends less than 0.25 square degree, whereas the Earth subtends a steradian or more, so scattered light and light potentially leaking around the shutter presents additional problems for the Earth. Also, we’re unsure if HST can point 180 deg from the Sun.
WFC3/UVIS/IR 11700
Bright Galaxies at z>7.5 with a WFC3 Pure Parallel Survey
The epoch of reionization represents a special moment in the history of the Universe as it is during this era that the first galaxies and star clusters are formed. Reionization also profoundly affects the environment where subsequent generations of galaxies evolve. Our overarching goal is to test the hypothesis that galaxies are responsible for reionizing neutral hydrogen. To do so we propose to carry out a pure parallel WFC3 survey to constrain the bright end of the redshift z>7.5 galaxy luminosity function on a total area of 176 arcmin^2 of sky. Extrapolating the evolution of the luminosity function from z~6, we expect to detect about 20 Lyman Break Galaxies brighter than M_* at z~8 significantly improving the current sample of only a few galaxies known at these redshifts. Finding significantly fewer objects than predicted on the basis of extrapolation from z=6 would set strong limits to the brightness of M_*, highlighting a fast evolution of the luminosity function with the possible implication that galaxies alone cannot reionize the Universe. Our observations will find the best candidates for spectroscopic confirmation, that is bright z>7.5 objects, which would be missed by small area deeper surveys. The random pointing nature of the program is ideal to beat cosmic variance, especially severe for luminous massive galaxies, which are strongly clustered. In fact our survey geometry of 38 independent fields will constrain the luminosity function like a contiguous single field survey with two times more area at the same depth. Lyman Break Galaxies at z>7.5 down to m_AB=26.85 (5 sigma) in F125W will be selected as F098M dropouts, using three to five orbits visits that include a total of four filters (F606W, F098M, F125W, F160W) optimized to remove low-redshift interlopers and cool stars. Our data will be highly complementary to a deep field search for high-z galaxies aimed at probing the faint end of the luminosity function, allowing us to disentangle the degeneracy between faint end slope and M_* in a Schechter function fit of the luminosity function. We waive proprietary rights for the data. In addition, we commit to release the coordinates and properties of our z>7.5 candidates within one month from the acquisition of each field.