NASA Hubble Space Telescope Daily Report #5149
HUBBLE SPACE TELESCOPE DAILY REPORT #5149
Continuing to Collect World Class Science
PERIOD COVERED: 5am July 29 – 5am July 30, 2010 (DOY 210/09:00z-211/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS: (None)
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 9 9
FGS REAcq 6 6
OBAD with Maneuver 6 6
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED:
ACS/WFC3 11593
Dynamical Masses of the Coolest Brown Dwarfs
T dwarfs are excellent laboratories to study the evolution and the atmospheric physics of both brown dwarfs and extrasolar planets. To date, only a single T dwarf binary has a dynamical mass determination, and more are sorely needed. The prospects of measuring more dynamical masses over the next decade are limited to 6 known short-period T dwarf binaries. We propose here to obtain Long-Term HST/ACS monitoring for the 3 of the 6 binaries which cannot be resolved with AO from the ground. Upon completion, our program will substantially increase the number of T dwarf dynamical mass measurements and thereby provide key benchmarks for testing theoretical models of ultracool objects.
COS/NUV/FUV 12086
Generation of 1-D Fixed Pattern Templates
Tests have shown that application of a 1-D fixed pattern template to a COS spectrum can reduce the fixed pattern noise in G130M or G160M spectra to an equivalent S/N of about 30/1. For this to be occur, the template must be derived from data for the same grating and nearly the same central wavelength as the observation. This is because each grating has a different cross dispersion profile, and different central wavelengths fall at different cross dispersion detector locations. As a result, spectra obtained at each grating and central wavelength setting are derived from different regions of the detectors — each with their own, unique detector features and grid wire shadows.
STIS/CC 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
STIS/CC 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
STS/MA/CC 12085
STIS/E230M Observations of HD6655 for Calibration of COS/G230L
This program observes HD 6655, a radial velocity target that is used for calibrating COS/G230L. The objective of this program is to get STIS data of this target, with the E230M grating, and then use this observations to derive the offsets between the internal and external COS/G230L wavelength scales.
WFC3/ACS/IR 11677
Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing a Hubble Legacy
With this proposal we will firmly establish the age of 47 Tuc from its cooling white dwarfs. 47 Tuc is the nearest and least reddened of the metal-rich disk globular clusters. It is also the template used for studying the giant branches of nearby resolved galaxies. In addition, the age sensitive magnitude spread between the main sequence turnoff and horizontal branch is identical for 47 Tuc, two bulge globular clusters and the bulge field population. A precise relative age constraint for 47 Tuc, compared to the halo clusters M4 and NGC 6397, both of which we recently dated via white dwarf cooling, would therefore constrain when the bulge formed relative to the old halo globular clusters. Of particular interest is that with the higher quality ACS data on NGC 6397, we are now capable with the technique of white dwarf cooling of determining ages to an accuracy of +/-0.4 Gyrs at the 95% confidence level. Ages derived from the cluster turnoff are not currently capable of reaching this precision. The important role that 47 Tuc plays in galaxy formation studies, and as the metal-rich template for the globular clusters, makes the case for a white dwarf cooling age for this metal-rich cluster compelling.
Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs younger than the Galactic halo. Others have suggested an age similar to that of the most metal poor globular clusters. The current situation is clearly uncertain and obviously a new approach to age dating this important cluster is required.
With the observations of 47 Tuc, this project will complete a legacy for HST. It will be the third globular cluster observed for white dwarf cooling; the three covering almost the full metallicity range of the cluster system. Unless JWST has its proposed bluer filters (700 and 900 nm) this science will not be possible perhaps for decades until a large optical telescope is again in space. Ages for globular clusters from the main sequence turnoff are less precise than those from white dwarf cooling making the science with the current proposal truly urgent.
WFC3/IR/S/C 11929
IR Dark Current Monitor
Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).
WFC3/UV 11554
Luminosity Profiles of Extremely Massive Clusters in NGC 7252
The galactic merger remnant NGC 7252 represents one of the most extreme post-starburst environments in the local universe. During the disk-disk merger (~400 Myr ago) this galaxy produced the largest young massive star cluster population known, including two clusters above 10^7 Msun, a factor of 100 more massive than typical globular clusters in the Milky Way. We propose ACS-HRC observations of 3 fields in NGC 7252 in order to explore the detailed properties, i.e. luminosity profiles, of these massive star clusters. These observations will be able to test massive cluster formation mechanisms (e.g. the cluster merger scenario) as well as the possible tidal erosion and truncation of the outer regions of the clusters by the galactic tidal field. These observations will compliment our large on-going study using archival HST data, of star cluster profiles outside the Local Group. The cluster population in NGC 7252 will extend our sample in cluster mass by an order of magnitude.
WFC3/UVIS 11905
WFC3 UVIS CCD Daily Monitor
The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).
WFC3/UVIS 11908
Cycle 17: UVIS Bowtie Monitor
Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.
WFC3/UVIS/IR 11644
A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System
The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.