Status Report

NASA Hubble Space Telescope Daily Report #5103

By SpaceRef Editor
May 27, 2010
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5103

Continuing to Collect World Class Science

PERIOD COVERED: 5am May 24 – 5am May 25, 2010 (DOY 144/09:00z-145/09:00z)

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 07 07
FGS REAcq 09 09
OBAD with Maneuver 04 04

SIGNIFICANT EVENTS: (None)

OBSERVATIONS SCHEDULED:

ACS/WFC 11591

Are Low-Luminosity Galaxies Responsible for Cosmic Reionization?

Our group has demonstrated that massive clusters, acting as powerful cosmic lenses, can constrain the abundance and properties of low-luminosity star-forming sources beyond z~6; such sources are thought to be responsible for ending cosmic reionization. The large magnification possible in the critical regions of well-constrained clusters brings sources into view that lie at or beyond the limits of conventional exposures such as the UDF. We have shown that the combination of HST and Spitzer is particularly effective in delivering the physical properties of these distant sources, constraining their mass, age and past star formation history. Indirectly, we therefore gain a valuable glimpse to yet earlier epochs. Recognizing the result (and limitations) of blank field surveys, we propose a systematic search through 10 lensing clusters with ACS/F814W and WFC3/[F110W+F160W] (in conjunction with existing deep IRAC data). Our goal is to measure with great accuracy the luminosity function at z~7 over a range of at least 3 magnitude, based on the identification of about 50 lensed galaxies at 6.5< z<8. Our survey will mitigate cosmic variance and extend the search both to lower luminosities and, by virtue of the WFC3/IRAC combination, to higher redshift. Thanks to the lensing amplification spectroscopic follow-up will be possible and make our findings the most robust prior to the era of JWST and the ELTs. ACS/WFC/WFC3/IR 11142 Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3< z<2.7 Using HST and Spitzer We aim to determine physical properties of IR luminous galaxies at 0.3< z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations of a unique, 24um flux-limited sample with complete Spitzer mid-IR spectroscopy. The 150 sources investigated in this program have S(24um) > 0.8mJy and their mid-IR spectra have already provided the majority targets with spectroscopic redshifts (0.3< z<2.7). The proposed 150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical measurements of the light distribution at the rest-frame ~8000A and better estimates of the bolometric luminosity. Combining these parameters together with the rich suite of spectral diagnostics from the mid-IR spectra, we will (1) measure how common mergers are among LIRGs and ULIRGs at 0.3< z<2.7, and establish if major mergers are the drivers of z>1 ULIRGs, as in the local Universe. (2) study the co-evolution of star formation and blackhole accretion by investigating the relations between the fraction of starburst/AGN measured from mid-IR spectra vs. HST morphologies, L(bol) and z. (3) obtain the current best estimates of the far-IR emission, thus L(bol) for this sample, and establish if the relative contribtuion of mid-to-far IR dust emission is correlated with morphology (resolved vs. unresolved).

ACS/WFC/WFC3/IR 11663

Formation and Evolution of Massive Galaxies in the Richest Environments at 1.5 < z < 2.0 We propose to image seven 1.5< z<2 clusters and groups from the IRAC Shallow Cluster Survey with WFC3 and ACS in order to study the formation and evolution of massive galaxies in the richest environments in the Universe in this important redshift range. We will measure the evolution of the sizes and morphologies of massive cluster galaxies, as a function of redshift, richness, radius and local density. In combination with allocated Keck spectroscopy, we will directly measure the dry merger fraction in these clusters, as well as the evolution of Brightest Cluster Galaxies (BCGs) over this redshift range where clear model predictions can be confronted. Finally we will measure both the epoch of formation of the stellar populations and the assembly history of that stellar mass, the two key parameters in the modern galaxy formation paradigm. COS/FUV/COS/NUV 11741 Probing Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems Currently we can only account for half of the baryons (or less) expected to be found in the nearby universe based on D/H and CMB observations. This “missing baryons problem” is one of the highest-priority challenges in observational extragalatic astronomy. Cosmological simulations suggest that the baryons are hidden in low-density, shock-heated intergalactic gas in the log T = 5 – 7 range, but intensive UV and X-ray surveys using O VI, O VII, and O VIII absorption lines have not yet confirmed this prediction. We propose to use COS to carry out a sensitive survey for Ne VIII and Mg X absorption in the spectra of nine QSOs at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also search for Si XII. This survey will provide more robust constraints on the quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3, and the data will provide rich constraints on the metal enrichment, physical conditions, and nature of a wide variety of QSO absorbers in addition to the warm-hot systems. By comparing the results to other surveys at lower redshifts (with STIS, FUSE, and from the COS GTO programs), the project will also enable the first study of how these absorbers evolve with redshift at z < 1. By combining the program with follow-up galaxy redshift surveys, we will also push the study of galaxy-absorber relationships to higher redshifts, with an emphasis on the distribution of the WHIM with respect to the large-scale matter distribution of the universe.. FGS 11789 An Astrometric Calibration of Population II Distance Indicators In 2002 HST produced a highly precise parallax for RR Lyrae. That measurement resulted in an absolute magnitude, M(V)= 0.61+/-0.11, a useful result, judged by the over ten refereed citations each year since. It is, however, unsatisfactory to have the direct, parallax-based, distance scale of Population II variables based on a single star. We propose, therefore, to obtain the parallaxes of four additional RR Lyrae stars and two Population II Cepheids, or W Vir stars. The Population II Cepheids lie with the RR Lyrae stars on a common K-band Period-Luminosity relation. Using these parallaxes to inform that relationship, we anticipate a zero-point error of 0.04 magnitude. This result should greatly strengthen confidence in the Population II distance scale and increase our understanding of RR Lyrae star and Pop II Cepheid astrophysics. S/C/WFC3/IR 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by GOs in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS). STIS/CCD 11845 CCD Dark Monitor Part 2 Monitor the darks for the STIS CCD. STIS/CCD 11847 CCD Bias Monitor-Part 2 Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns. STIS/MA1 12079 STIS PtCr/Ne Lamp Ratios We will provide improved information on the ratio of the STIS wavelength calibration lamps at all wavelengths. The LINE & HITM1 lamps have faded by a factor of several since launch, and at the shortest wavelengths the fading is enough to have significantly impacted the S/N of the wavecals. The FUV flux of the HITM2 lamp has not been checked since 1997, and so a detailed comparison of all three lamps is needed to support a proper wavelength calibration for GO proposals. WFC3/IR 11702 Search for Very High-z Galaxies with WFC3 Pure Parallel WFC3 will provide an unprecedented probe to the early universe beyond the current redshift frontier. Here we propose a pure parallel program using this new instrument to search for Lyman-break galaxies at 6.5< z<8.8 and to probe the epoch of reionization, a hallmark event in the history of the early universe. We request 200 orbits, spreading over 30 ~ 50 high Galactic latitude visits (|b|>20deg) that last for 4 orbits and longer, resulting a total survey area of about 140~230 square arcminute. Based on our understanding of the new HST parallel observation scheduling process, we believe that the total number of long-duration pure parallel visits in Cycle 17 should be sufficient to accommodate our program. We waive all proprietary rights to our data, and will also make the enhanced data products public in a timely manner. (1) We will use both the UVIS and the IR channels, and do not need to seek optical data from elsewhere. (2) Our program will likely triple the size of the probable candidate samples at z~7 and z~8, and will complement other targeted programs aiming at the similar redshift range. (3) Being a pure parallel program, our survey will only make very limited demand on the scarce HST resources. More importantly, as the pure parallel pointings will be at random sight-lines, our program will be least affected by the bias due to the large scale structure (“cosmic variance”). (4) We aim at the most luminous LBG population, and will address the bright-end of the luminosity function at z~8 and z~7. We will constrain the value of L* in particular, which is critical for understanding the star formation process and the stellar mass assembly history in the first few hundred million years of the universe. (5) The candidates from our survey, most of which will be the brightest ones that any surveys would be able to find, will have the best chance to be spectroscopically confirmed at the current 8–10m telescopes. (6) We will also find a large number of extremely red, old galaxies at intermediate redshifts, and the fine spatial resolution offered by the WFC3 will enable us constrain their formation history based on the study of their morphology, and hence shed light on their connection to the very early galaxies in the universe.

WFC3/UVI 11556

Investigations of the Pluto System

We propose a set of high SNR observations of the Pluto system that will provide improved lightcurves, orbits, and photometric properties of Nix and Hydra. The key photometric result for Nix and Hydra will be a vastly improved lightcurve shape and rotation period to test if the objects are in synchronous rotation or not. A second goal of this program will be to retrieve a new epoch of albedo map for the surface of Pluto. These observations will also improve masses and in some case densities for the bodies in the Pluto system.

WFC3/UVI 11702

Search for Very High-z Galaxies with WFC3 Pure Parallel

WFC3 will provide an unprecedented probe to the early universe beyond the current redshift frontier. Here we propose a pure parallel program using this new instrument to search for Lyman-break galaxies at 6.5< z<8.8 and to probe the epoch of reionization, a hallmark event in the history of the early universe. We request 200 orbits, spreading over 30 ~ 50 high Galactic latitude visits (|b|>20deg) that last for 4 orbits and longer, resulting a total survey area of about 140~230 square arcminute. Based on our understanding of the new HST parallel observation scheduling process, we believe that the total number of long-duration pure parallel visits in Cycle 17 should be sufficient to accommodate our program. We waive all proprietary rights to our data, and will also make the enhanced data products public in a timely manner. (1) We will use both the UVIS and the IR channels, and do not need to seek optical data from elsewhere. (2) Our program will likely triple the size of the probable candidate samples at z~7 and z~8, and will complement other targeted programs aiming at the similar redshift range. (3) Being a pure parallel program, our survey will only make very limited demand on the scarce HST resources. More importantly, as the pure parallel pointings will be at random sight-lines, our program will be least affected by the bias due to the large scale structure (“cosmic variance”). (4) We aim at the most luminous LBG population, and will address the bright-end of the luminosity function at z~8 and z~7. We will constrain the value of L* in particular, which is critical for understanding the star formation process and the stellar mass assembly history in the first few hundred million years of the universe. (5) The candidates from our survey, most of which will be the brightest ones that any surveys would be able to find, will have the best chance to be spectroscopically confirmed at the current 8–10m telescopes. (6) We will also find a large number of extremely red, old galaxies at intermediate redshifts, and the fine spatial resolution offered by the WFC3 will enable us constrain their formation history based on the study of their morphology, and hence shed light on their connection to the very early galaxies in the universe.

WFC3/UVI 11730

Continued Proper Motions of the Magellanic Clouds: Orbits, Internal Kinematics, and Distance

In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in the Magellanic Clouds centered on background quasars. We used these data to determine the proper motions of the LMC and SMC to better than 5% and 15% respectively. The results had a number of unexpected implications for the Milky Way-LMC-SMC system and received considerable attention in the literature and in the press. The implied three-dimensional velocities are larger than previously believed and close to the escape velocity in a standard 10^12 solar mass Milky Way dark halo. Our orbit calculations suggest the Clouds may not be bound to the Milky Way or may just be on their first passage, both of which are unexpected in view of traditional interpretations of the Magellanic Stream. Alternatively, the Milky Way dark halo may be a factor two more massive than previously believed, which would be surprising in view of other observational constraints. Also, the relative velocity between the LMC and SMC was larger than expected, leaving open the possibility that the Clouds may not be bound to each other. To further verify and refine our results we requested an additional epoch data in Cycle 16 which is being executed with WFPC2/PC due to the failure of ACS. A detailed analysis of one LMC field shows that the field proper motion using all three epochs of data is consistent within 1-sigma with the two-epoch data, thus verifying that there are no major systematic effects in our previous measurements. The random errors, however, are only smaller by a factor of 1.4 because of the relatively large errors in the WFPC2 data. A prediction for a fourth epoch with measurement errors similar to epochs 1 and 2 shows that the uncertainties will improve by a factor of 3. This will allow us to better address whether the Clouds are indeed bound to each other and to the Milky Way. It will also allow us to constrain the internal motions of various populations within the Clouds, and to determine a distance to the LMC using rotational parallax. Continuation of this highly successful program is therefore likely to provide important additional insights. Execution in SNAPshot mode guarantees maximally efficient use of HST resources.

WFC3/UVI 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

WFC3/UVI 11908

Cycle 17: UVIS Bowtie Monitor

Ground testing revealed an intermittent hysteresis type effect in the UVIS detector (both CCDs) at the level of ~1%, lasting hours to days. Initially found via an unexpected bowtie-shaped feature in flatfield ratios, subsequent lab tests on similar e2v devices have since shown that it is also present as simply an overall offset across the entire CCD, i.e., a QE offset without any discernable pattern. These lab tests have further revealed that overexposing the detector to count levels several times full well fills the traps and effectively neutralizes the bowtie. Each visit in this proposal acquires a set of three 3×3 binned internal flatfields: the first unsaturated image will be used to detect any bowtie, the second, highly-exposed image will neutralize the bowtie if it is present, and the final image will allow for verification that the bowtie is gone.

SpaceRef staff editor.