NASA Hubble Space Telescope Daily Report #5095
HUBBLE SPACE TELESCOPE DAILY REPORT #5095
PERIOD COVERED: 5am May 12 – 5am May 13, 2010 (DOY 132/09:00z-133/09:00z)
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)
HSTARS:
12274 – REAcq(1,2,1) scheduled at 132/17:39:15z initially received a stop flag indication on FGS-1 during acquisition walkdown. The acquisition was finally successful.
COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS GSAcq 4 4
FGS REAcq 11 11
OBAD with Maneuver 3 3
SIGNIFICANT EVENTS: (None)
OBSERVATIONS SCHEDULED
ACS/WFC 11995
CCD Daily Monitor (Part 2)
This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.
COS/NUV/FUV 11720
Detailed Analysis of Carbon Atmosphere White Dwarfs
We propose to obtain UV spectra for the newly discovered white dwarf stars with a carbon- dominated atmosphere. Model calculations show that these stars emit most of their light in the UV part of the electromagnetic spectrum and that an accurate determination of the flux in this region is crucial for an accurate determination of the atmospheric parameters. It will also provide a unique opportunity to test the atomic data and broadening theory in stellar conditions never met before. This will play a primordial role in our path to understand the origin of these objects as well to obtain a better understanding of the evolution of stars in general. The principal objective we hope to achieve with these observations are 1) obtain accurate surface gravity/mass for these stars, 2) constrain/determine the abundance of other elements (O, He, Mg, Ne etc.), especially oxygen, 3) verify the accuracy of the various theoretical atomic data used in the model calculations, 4) understand the origin and evolution of carbon atmosphere white dwarfs, in particular whether progenitor stars as massive as 10.5 solar masses can produce white dwarfs, rather than supernovae. We propose to observe 5 objects chosen carefully to cover the range of observed properties among carbon atmosphere white dwarfs (effective temperature, surface gravity, abundance of hydrogen/helium and magnetic field).
STIS/CC 11845
CCD Dark Monitor Part 2
Monitor the darks for the STIS CCD.
STIS/CC 11847
CCD Bias Monitor-Part 2
Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.
WFC3/ACS 11888
ACS Internal Flat Fields
The stability of the CCD flat fields will be monitored using the calibration lamps and a sub-sample of the filter set. High signal observations will be used to assess the stability of the pixel-to-pixel flat field structure and to monitor the position of the dust motes.
WFC3/UV 11602
High-resolution imaging of three new UV-bright lensed arcs
We have identified and spectroscopically confirmed three new strongly lensed, UV-bright star-forming galaxies at z ~ 2 that are similar to the well-studied gravitationally lensed Lyman Break Galaxy (LBG) MS1512-cB58, and are of comparable brightness to the ”8 O’Clock Arc” (Allam et al. 2007) and ”Clone” systems (Lin et al. 2008). The 8 O’Clock Arc and Clone have already been awarded 20 orbits for deep WFPC2 and NICMOS imaging in five bands (HST cycle 16, Program 11167, PI: Allam). Adding these three recently discovered objects thus completes a unique set of the brightest known strongly lensed galaxies at z ~ 2, with magnitudes of r~20-21, and they provide a new window into the detailed study of the properties of high redshift galaxies. We propose 21 orbits for deep WFC3 imaging in five bands (F475W, F606W, F814W, F110W, and F160W) in order to construct detailed lensing models, to probe the mass and light profiles of the lensing galaxies and their environments, and to constrain the spectral energy distributions, star formation histories, and morphologies of the lensed galaxies.
WFC3/UV/IR 11664
The WFC3 Galactic Bulge Treasury Program: Populations, Formation History, and Planets
Exploiting the full power of the Wide Field Camera 3 (WFC3), we propose deep panchromatic imaging of four fields in the Galactic bulge. These data will enable a sensitive dissection of its stellar populations, using a new set of reddening-free photometric indices we have constructed from broad-band filters across UV, optical, and near-IR wavelengths. These indices will provide accurate temperatures and metallicities for hundreds of thousands of individual bulge stars. Proper motions of these stars derived from multi-epoch observations will allow separation of pure bulge samples from foreground disk contamination. Our catalogs of proper motions and panchromatic photometry will support a wide range of bulge studies.
Using these photometric and astrometric tools, we will reconstruct the detailed star-formation history as a function of position within the bulge, and thus differentiate between rapid- and extended-formation scenarios. We will also measure the dependence of the stellar mass function on metallicity, revealing how the characteristic mass of star formation varies with chemistry. Our sample of bulge stars with accurate metallicities will include 12 candidate hosts of extrasolar planets. Planet frequency is correlated with metallicity in the solar neighborhood; our measurements will extend this knowledge to a remote environment with a very distinct chemistry.
Our proposal also includes observations of six well-studied globular and open star clusters; these observations will serve to calibrate our photometric indices, provide empirical population templates, and transform the theoretical isochrone libraries into the WFC3 filter system. Besides enabling our own program, these products will provide powerful new tools for a host of other stellar-population investigations with HST/WFC3. We will deliver all of the products from this Treasury Program to the community in a timely fashion.
WFC3/UVIS 11594
A WFC3 Grism Survey for Lyman Limit Absorption at z=2
We propose to conduct a spectroscopic survey of Lyman limit absorbers at redshifts 1.8 < z < 2.5, using WFC3 and the G280 grism. This proposal intends to complete an approved Cycle 15 SNAP program (10878), which was cut short due to the ACS failure. We have selected 64 quasars at 2.3 < z < 2.6 from the Sloan Digital Sky Survey Spectroscopic Quasar Sample, for which no BAL signature is found at the QSO redshift and no strong metal absorption lines are present at z > 2.3 along the lines of sight. The survey has three main
observational goals. First, we will determine the redshift frequency dn/dz of the LLS over the column density range 16.0 < log(NHI) < 20.3 cm^-2. Second, we will measure the column density frequency distribution f(N) for the partial Lyman limit systems (PLLS) over the column density range 16.0 < log(NHI) < 17.5 cm^-2. Third, we will identify those sightlines which could provide a measurement of the primordial D/H ratio. By carrying out this survey, we can also help place meaningful constraints on two key quantities of cosmological relevance. First, we will estimate the amount of metals in the LLS using the f(N), and ground based observations of metal line transitions. Second, by determining f(N) of the PLLS, we can constrain the amplitude of the ionizing UV background at z~2 to a greater precision. This survey is ideal for a snapshot observing program, because the on-object integration times are all well below 30 minutes, and follow-up observations from the ground require minimal telescope time due to the QSO sample being bright. WFC3/UVIS 11650 Mutual Orbits, Colors, Masses, and Bulk Densities of 3 Cold Classical Trans-Neptunian Binaries Many Trans-Neptunian Objects (TNOs) have been found to be binary or multiple systems. As in other astrophysical settings, Trans-Neptunian Binaries (TNBs) offer uniquely valuable information. Their mutual orbits allow the direct determination of their system masses, perhaps the most fundamental physical quantity of any astronomical object. Their frequency of occurrence and dynamical characteristics provide clues to formation conditions and evolution scenarios affecting both the binaries and their single neighbors. Combining masses with sizes, bulk densities can be measured. Densities constrain bulk composition and internal structure, key clues to TNO origins and evolution over time. Several TNB bulk densities have been determined, hinting at interesting trends. But none of them belongs to the Cold Classical sub-population, the one group of TNOs with demonstrably distinct physical characteristics. Two top-priority Spitzer programs will soon observe and measure the sizes of 3 Cold Classical TNBs. This proposal seeks to determine the mutual orbits and thus masses of these systems, enabling computation of their densities. WFC3/UVIS 11697 Proper Motion Survey of Classical and SDSS Local Group Dwarf Galaxies Using the superior resolution of HST, we propose to continue our proper motion survey of Galactic dwarf galaxies. The target galaxies include one classical dwarf, Leo II, and six that were recently identified in the Sloan Digital Sky Survey data: Bootes I, Canes Venatici I, Canes Venatici II, Coma Berenices, Leo IV, and Ursa Major II. We will observe a total of 16 fields, each centered on a spectroscopically-confirmed QSO. Using QSOs as standards of rest in measuring absolute proper motions has proven to be the most accurate and most efficient method. HST is our only option to quickly determine the space motions of the SDSS dwarfs because suitable ground-based imaging is only a few years old and such data need several decades to produce a proper motion. The two most distant galaxies in our sample will require time baselines of four years to achieve our goal of a 30-50 km/s uncertainty in the tangential velocity; given this and the finite lifetime of HST, it is imperative that first-epoch observations be taken in this cycle. The SDSS dwarfs have dramatically lower surface brightnesses and luminosities than the classical dwarfs. Proper motions are crucial for determining orbits of the galaxies and knowing the orbits will allow us to test theories for the formation and evolution of these galaxies and, more generally, for the formation of the Local Group. WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS/IR 11700 Bright Galaxies at z>7.5 with a WFC3 Pure Parallel Survey
The epoch of reionization represents a special moment in the history of the Universe as it is during this era that the first galaxies and star clusters are formed. Reionization also profoundly affects the environment where subsequent generations of galaxies evolve. Our overarching goal is to test the hypothesis that galaxies are responsible for reionizing neutral hydrogen. To do so we propose to carry out a pure parallel WFC3 survey to constrain the bright end of the redshift z>7.5 galaxy luminosity function on a total area of 176 arcmin^2 of sky. Extrapolating the evolution of the luminosity function from z~6, we expect to detect about 20 Lyman Break Galaxies brighter than M_* at z~8 significantly improving the current sample of only a few galaxies known at these redshifts. Finding significantly fewer objects than predicted on the basis of extrapolation from z=6 would set strong limits to the brightness of M_*, highlighting a fast evolution of the luminosity function with the possible implication that galaxies alone cannot reionize the Universe. Our observations will find the best candidates for spectroscopic confirmation, that is bright z>7.5 objects, which would be missed by small area deeper surveys. The random pointing nature of the program is ideal to beat cosmic variance, especially severe for luminous massive galaxies, which are strongly clustered. In fact our survey geometry of 38 independent fields will constrain the luminosity function like a contiguous single field survey with two times more area at the same depth. Lyman Break Galaxies at z>7.5 down to m_AB=26.85 (5 sigma) in F125W will be selected as F098M dropouts, using three to five orbits visits that include a total of four filters (F606W, F098M, F125W, F160W) optimized to remove low-redshift interlopers and cool stars. Our data will be highly complementary to a deep field search for high- z galaxies aimed at probing the faint end of the luminosity function, allowing us to disentangle the degeneracy between faint end slope and M_* in a Schechter function fit of the luminosity function. We waive proprietary rights for the data. In addition, we commit to release the coordinates and properties of our z>7.5 candidates within one month from the acquisition of each field.