Status Report

NASA Hubble Space Telescope Daily Report #5073

By SpaceRef Editor
April 14, 2010
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5073

PERIOD COVERED: 5am April 12 – 5am April 13, 2010 (DOY 102/09:00z-103/09:00z)

OBSERVATIONS SCHEDULED

ACS/WFC 11995

CCD Daily Monitor (Part 2)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.

ACS/WFC3 11882

CCD Hot Pixel Annealing

This program continues the monthly anneal that has taken place every four weeks for the last three cycles. We now obtain WFC biases and darks before and after the anneal in the same sequence as is done for the ACS daily monitor (now done 4 times per week). So the anneal observation supplements the monitor observation sets during the appropriate week. Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data will be obtained over a range of signal levels for the Wide Field Channel (WFC). This program emulates the ACS pre-flight ground calibration and post-launch SMOV testing (program 8948), so that results from each epoch can be directly compared. The High Resolution Channel (HRC) visits have been removed since it could not be repaired during SM4.

This program also assesses the read noise, bias structure, and amplifier cross-talk of ACS/WFC using the GAIN=1.4 A/D conversion setting. This investigation serves as a precursor to a more comprehensive study of WFC performance using GAIN=1.4.

COS/FUV 11895

FUV Detector Dark Monitor

Monitor the FUV detector dark rate by taking long science exposures without illuminating the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.

COS/NUV 11561

An Intensive COS Spectroscopic Study of the Planetary Debris Disks Around two Warm White Dwarfs

It is very likely that the gas giants in our Solar system will survive the evolution of the Sun into a white dwarf, and the same is thought to be generally true for Jovian planets around solar-like stars if their initial orbits are wider than ~3AU. Despite this prediction, no unambiguous detection of a planet around a white dwarf has been announced so far. However, over the past few years, about a dozen white dwarfs have been identified which host metal-rich debris disks that are thought to stem from the tidal disruption of asteroids. In most cases the debris disks are observed in the form of an infrared flux excess, and offer relatively little diagnostic potential for the study of their structure. We have discovered three warm (T~20000K) white dwarfs with metal-rich debris disks in a gaseous phase which display strong double-peaked CaII emission lines in the I-band and weak Fe 5169A emission. The line profiles can be modeled in terms of Keplerian disks with an extension of ~1Rsun around the white dwarfs. Photospheric MgII 4481A absorption demonstrates that the white dwarfs are accreting from the debris disks. Besides these spectral features, the optical wavelength range is devoid of other useful metal transitions. Here, we propose an intensive spectroscopic ultraviolet study of these systems, which will provide (a) ~1000 photospheric absorption lines of 15 chemical elements, allowing an accurate abundance study of the material accreted from the debris disks, and (b) ~2 dozen additional emission lines of Mg, Cr, Ti, and Fe that will provide detailed insight into the dynamical, thermal, and density structure of these exo-planetary debris disks.

COS/NUV 11894

NUV Detector Dark Monitor

Measure the NUV detector dark rate by taking long science exposures with no light on the detector. The detector dark rate and spatial distribution of counts will be compared to pre-launch and SMOV data in order to verify the nominal operation of the detector. Variations of count rate as a function of orbital position will be analyzed to find dependence of dark rate on proximity to the SAA. Dependence of dark rate as function of time will also be tracked.

S/C 12046

COS FUV DCE Memory Dump

Whenever the FUV detector high voltage is on, count rate and current draw information is collected, monitored, and saved to DCE memory. Every 10 msec the detector samples the currents from the HV power supplies (HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are saved in memory, along with a histogram of the number of occurrences of each current value.

In the case of a HV transient (known as a “crackle” on FUSE), where one of these currents exceeds a preset threshold for a persistence time, the HV will shut down, and the DCE memory will be dumped and examined as part of the recovery procedure. However, if the current exceeds the threshold for less than the persistence time (a “mini-crackle” in FUSE parlance), there is no way to know without dumping DCE memory. By dumping and examining the histograms regularly, we will be able to monitor any changes in the rate of “mini-crackles” and thus learn something about the state of the detector.

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11855

STIS/CCD Spectroscopic Sensitivity Monitor for Cycle 17

Monitor sensitivity of each CCD grating mode to detect any change due to contamination or other causes.

WFC3/ACS/IR 11731

Studying Cepheid Systematics in M81: H-Band Observations

The local value of the Hubble Constant remains one of the most important constraints in cosmology, but improving on the 10% accuracy of the HST Key Project is challenging. No improvements will be convincing until the metallicity dependence is well constrained and blending effects are fully understood. M81 and its dwarf companion Holmberg IX are superb laboratories for studying Cepheid systematics because they contain large numbers of bright Cepheids with a good spread in metallicity lying at a common, relatively close distance. We have identified 180 12< P< 70 day Cepheids in these two galaxies using the Large Binocular Telescope (compared to 30 in total by the KP), and will expand the sample further in 2008-2009. We will use 10 orbits with WFC3/IR to obtain H-band images of 100 Cepheids in M81 to add to the ACS/BVI calibrations we will obtain from archival data and 1 orbit with WFC3/UVIS to add B-band data for Holmberg IX. Four band BVIH photometry will allow us to flux calibrate, estimate extinction, measure metallicity effects and then check the results in detail. We can also examine blending effects on WFC3/IR data in a relatively nearby galaxy before it is applied to more distant galaxies. Our M81 sample is three times larger than the next best sample, that of NGC4258, and suffers less from blending because M81 is at half the distance, so it is an excellent laboratory for studying Cepheid systematics even if it lacks as precise a geometric distance as NGC4258. WFC3/IR 11838 Completing a Flux-limited Survey for X-ray Emission from Radio Jets We will measure the changing flow speeds, magnetic fields, and energy fluxes in well-resolved quasar jets found in our short-exposure Chandra survey by combining new, deep Chandra data with radio and optical imaging. We will image each jet with sufficient sensitivity to estimate beaming factors and magnetic fields in several distinct regions, and so map the variations in these parameters down the jets. HST observations will help diagnose the role of synchrotron emission in the overall SED, and may reveal condensations on scales less than 0.1 arcsec. WFC3/IR/S/C 11929 IR Dark Current Monitor Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS). WFC3/IR/S/C 12093 IR Non-linearity Calibration using Subarrays The purpose of this proposal is to measure the non-linearity in subarray internal flatfields. The results will be compared to the current non-linearity correction based on full-frame data, to determine whether the current calibration is appropriate for the significantly faster readouts in subarrays. WFC3/UV/IR 11620 A Quasar Light Echo in the Local Universe? The time history and duty cycle of individual AGN is an important part of their evolution and the growth history of massive black holes, but almost unconstrained on scales between galaxy-interaction timescales (hundreds of Myr) and the scales of years probed by variability measurements. We propose a detailed study of an object which seems to be a large-scale light echo from a QSO-level episode in a nearby galaxy. The Galaxy Zoo morphological survey of SDSS objects has uncovered a peculiar emission-line structure whose spectrum matches the narrow-line region of AGN, despite lying at least 20 kpc from a galaxy whose activity is currently very weak. This is best explained if the nucleus has faded dramatically on time scales of several tens of thousands of years. We propose a suite of imaging and spectroscopic observations to probe its properties, and the time history of this episode of nuclear activity, measuring time scales hitherto unavailable. WFC3/UVI/IR 11557 The Nature of Low-Ionization BAL QSOs The rare subclass of optically-selected QSOs known as low-ionization broad absorption line (LoBAL) QSOs show signs of high-velocity gas outflows and reddened continua indicative of dust obscuration. Recent studies show that galaxies hosting LoBAL QSOs tend to be ultraluminous infrared systems that are undergoing mergers, and that have dominant young (< 100 Myr) stellar populations. Such studies support the idea that LoBAL QSOs represent a short- lived phase early in the life of QSOs, when powerful AGN-driven winds are blowing away the dust and gas surrounding the QSO. If so, understanding LoBALs would be critical in the study of phenomena regulating black hole and galaxy evolution, such as AGN feedback and the early stages of nuclear accretion. These results, however, come from very small samples that may have serious selection biases. We are therefore taking a more aggressive approach by conducting a systematic multiwavelength study of a volume limited sample of LoBAL QSOs at 0.5 < z < 0.6 drawn from SDSS. We propose to image their host galaxies in two bands using WFC3/UVIS and WFC3/IR to study the morphologies for signs of recent tidal interactions and to map their interaction and star forming histories. We will thus determine whether LoBAL QSOs are truly exclusively found in young merging systems that are likely to be in the early stages of nuclear accretion. WFC3/UVIS 11732 The Temperature Profiles of Quasar Accretion Disks We can now routinely measure the size of quasar accretion disks using gravitational microlensing of lensed quasars. At optical wavelengths we observe a size and scaling with black hole mass roughly consistent with thin disk theory but the sizes are larger than expected from the observed optical fluxes. One solution would be to use a flatter temperature profile, which we can study by measuring the wavelength dependence of the disk size over the largest possible wavelength baseline. Thus, to understand the size discrepancy and to probe closer to the inner edge of the disk we need to extend our measurements to UV wavelengths, and this can only be done with HST. For example, in the UV we should see significant changes in the optical/UV size ratio with black hole mass. We propose monitoring 5 lenses spanning a broad range of black hole masses with well-sampled ground based light curves, optical disk size measurements and known GALEX UV fluxes during Cycles 17 and 18 to expand from our current sample of two lenses. We would obtain 5 observations of each target in each Cycle, similar to our successful strategy for the first two targets. WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). FLIGHT OPERATIONS SUMMARY: Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.) HSTARS: (None) COMPLETED OPS REQUEST: (None) COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 10 10
FGS REAcq 6 6
OBAD with Maneuve 8 8

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.