Status Report

NASA Hubble Space Telescope Daily Report #5070

By SpaceRef Editor
April 11, 2010
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5070

Continuing to Collect World Class Science

PERIOD COVERED: 5am April 7 – 5am April 8, 2010 (DOY 097/09:00z-098/09:00z)

OBSERVATIONS SCHEDULED

ACS/WFC 11995

CCD Daily Monitor (Part 2)

This program comprises basic tests for measuring the read noise and dark current of the ACS WFC and for tracking the growth of hot pixels. The recorded frames are used to create bias and dark reference images for science data reduction and calibration. This program will be executed four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To facilitate scheduling, this program is split into three proposals. This proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June 2010.

ACS/WFC3 11599

Distances of Planetary Nebulae from SNAPshots of Resolved Companions

Reliable distances to individual planetary nebulae (PNe) in the Milky Way are needed to advance our understanding of their spatial distribution, birthrates, influence on galactic chemistry, and the luminosities and evolutionary states of their central stars (CSPN). Few PNe have good distances, however. One of the best ways to remedy this problem is to find resolved physical companions to the CSPN and measure their distances by photometric main-sequence fitting. We have previously used HST to identify and measure probable companions to 10 CSPN, based on angular separations and statistical arguments only. We now propose to use HST to re-observe 48 PNe from that program for which additional companions are possibly present. We then can use the added criterion of common proper motion to confirm our original candidate companions and identify new ones in cases that could not confidently be studied before. We will image the region around each CSPN in the V and I bands, and in some cases in the B band. Field stars that appear close to the CSPN by chance will be revealed by their relative proper motion during the 13+ years since our original survey, leaving only genuine physical companions in our improved and enlarged sample. This study will increase the number of Galactic PNe with reliable distances by 50 percent and improve the distances to PNe with previously known companions.

STIS/CC 11654

UV Studies of a Core Collapse Supernova

Observations of the UV spectrum of core collapse SNe hold unique information about nucleosynthesis, the mass loss history, shock physics and dust formation in the explosion on massive stars. This proposal aims at a detailed study of a bright core collapse SN, discovered by any of the many ongoing surveys, either a Type IIP, IIn or Ibc supernova. We will address the role of circumstellar interaction and mass loss through CNO lines in the UV, the nature of dust formation from UV line profiles and use the UV continuum as a diagnostic of non-thermal emission from the shock. The overall goal of our team is to achieve a better understanding of these objects by combining HST data with complementary ground-based observations. We have used HST to obtain UV spectra from the explosion to the nebular phase. Over the past decade, we have conducted studies of nearby SNe with HST, and we have published an extensive series of papers. When Nature provides a bright candidate, HST should be ready to respond.

STIS/CC 11845

CCD Dark Monitor Part 2

Monitor the darks for the STIS CCD.

STIS/CC 11847

CCD Bias Monitor-Part 2

Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns.

STIS/CCD 11784

The Orbit of the Most Massive Known Astrometric Binary

We have recently used FGS and HRC observations to (a) resolve HD 93129A into two components with very similar optical/UV colors and a magnitude difference of 0.9 and to (b) detect their relative orbital motion over a span of 8 years. HD 93129Aa is the prototype O2 If* star, with an evolutionary mass near 100 M_Sun, while Ab is likely to be a very early O main-sequence star with a similar or only slightly smaller mass. Our HST astrometric measurements yield a total mass above 100 M_Sun, thus confirming the extremely high mass of the binary, and indicate that the system appears to be approaching periastron. We request new FGS and HRC observations to (a) calculate the mass ratio of the system by measuring the orbit of each of the components with respect to the nearby stars, (b) obtain the periastron epoch, and (c) start measuring the orbit in order to produce an estimate of the total mass. These measurements are crucial to shed light on the value of the stellar upper mass limit. Due the the non-recovery of HRC on SM4, the last visit was changed to STIS.

STIS/CCD/MA1/MA2 11860

MAMA Spectroscopic Sensitivity and Focus Monitor

The purpose of this proposal is to monitor the sensitivity of each MAMA grating mode to detect any change due to contamination or other causes, and to also monitor the STIS focus in a spectroscopic and an imaging mode.

STIS/CCD/MA2 11568

A SNAPSHOT Survey of the Local Interstellar Medium: New NUV Observations of Stars with Archived FUV Observations

We propose to obtain high-resolution STIS E230H SNAP observations of MgII and FeII interstellar absorption lines toward stars within 100 parsecs that already have moderate or high-resolution far-UV (FUV), 900-1700 A, observations available in the MAST Archive. Fundamental properties, such as temperature, turbulence, ionization, abundances, and depletions of gas in the local interstellar medium (LISM) can be measured by coupling such observations. Due to the wide spectral range of STIS, observations to study nearby stars also contain important data about the LISM embedded within their spectra. However, unlocking this information from the intrinsically broad and often saturated FUV absorption lines of low-mass ions, (DI, CII, NI, OI), requires first understanding the kinematic structure of the gas along the line of sight. This can be achieved with high resolution spectra of high-mass ions, (FeII, MgII), which have narrow absorption lines, and can resolve each individual velocity component (interstellar cloud). By obtaining short (~10 minute) E230H observations of FeII and MgII, for stars that already have moderate or high- resolution FUV spectra, we can increase the sample of LISM measurements, and thereby expand our knowledge of the physical properties of the gas in our galactic neighborhood. STIS is the only instrument capable of obtaining the required high resolution data now or in the foreseeable future.

WFC3/IR/S/C 11929

IR Dark Current Monitor

Analyses of ground test data showed that dark current signals are more reliably removed from science data using darks taken with the same exposure sequences as the science data, than with a single dark current image scaled by desired exposure time. Therefore, dark current images must be collected using all sample sequences that will be used in science observations. These observations will be used to monitor changes in the dark current of the WFC3-IR channel on a day-to-day basis, and to build calibration dark current ramps for each of the sample sequences to be used by Gos in Cycle 17. For each sample sequence/array size combination, a median ramp will be created and delivered to the calibration database system (CDBS).

WFC3/UV 11635

Improve the Measurement of Vesta’s Pole Orientation to Support Dawn Mission

NASA’s Dawn spacecraft is scheduled to go into orbit around the main belt asteroid 4 Vesta in July 2011. Currently the project is using a 3- pole position uncertainty of Vesta of 12 for spacecraft trajectory design. We have determined that with an additional set of Hubble observations at Vesta’s next opposition in February 2010, that the pole position uncertainty can be reduced by a factor of 4. This will reduce both cost and risk to the Dawn mission, and is likely to increase the stay time at Vesta and will add to the scientific return of the mission. The requested observing window in February 2010 is the last and single best opportunity that can benefit the Dawn mission, but it is before the start of the next HST Cycle.

WFC3/UVIS 11905

WFC3 UVIS CCD Daily Monitor

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS).

WFC3/UVIS/IR 11644

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into the Formation of the Outer Solar System

The eight planets overwhelmingly dominate the solar system by mass, but their small numbers, coupled with their stochastic pasts, make it impossible to construct a unique formation history from the dynamical or compositional characteristics of them alone. In contrast, the huge numbers of small bodies scattered throughout and even beyond the planets, while insignificant by mass, provide an almost unlimited number of probes of the statistical conditions, history, and interactions in the solar system. To date, attempts to understand the formation and evolution of the Kuiper Belt have largely been dynamical simulations where a hypothesized starting condition is evolved under the gravitational influence of the early giant planets and an attempt is made to reproduce the current observed populations. With little compositional information known for the real Kuiper Belt, the test particles in the simulation are free to have any formation location and history as long as they end at the correct point. Allowing compositional information to guide and constrain the formation, thermal, and collisional histories of these objects would add an entire new dimension to our understanding of the evolution of the outer solar system. While ground based compositional studies have hit their flux limits already with only a few objects sampled, we propose to exploit the new capabilities of WFC3 to perform the first ever large-scale dynamical-compositional study of Kuiper Belt Objects (KBOs) and their progeny to study the chemical, dynamical, and collisional history of the region of the giant planets. The sensitivity of the WFC3 observations will allow us to go up to two magnitudes deeper than our ground based studies, allowing us the capability of optimally selecting a target list for a large survey rather than simply taking the few objects that can be measured, as we have had to do to date. We have carefully constructed a sample of 120 objects which provides both overall breadth, for a general understanding of these objects, plus a large enough number of objects in the individual dynamical subclass to allow detailed comparison between and within these groups. These objects will likely define the core Kuiper Belt compositional sample for years to come. While we have many specific results anticipated to come from this survey, as with any project where the field is rich, our current knowledge level is low, and a new instrument suddenly appears which can exploit vastly larger segments of the population, the potential for discovery — both anticipated and not — is extraordinary.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS: (None)

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 7 7
FGS REAcq 9 9
OBAD with Maneuver 6 6

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.