Status Report

NASA Hubble Space Telescope Daily Report #5056

By SpaceRef Editor
March 22, 2010
Filed under , ,

HUBBLE SPACE TELESCOPE DAILY REPORT #5056

PERIOD COVERED: 5am March 18 – 5am March 19, 2010 (DOY 077/09:00z-078/09:00z)

OBSERVATIONS SCHEDULED

COS/NUV 11705

Physical Properties of Quasar Outflows: From BALs to Mini-BALs

Accretion disk outflows are important components of quasar environments. They might play a major role in facilitating accretion, regulating star formation in the host galaxies and distributing metals to the surrounding gas. They reveal themselves most conspicuously via broad absorption lines (BALs), but they appear even more frequently in other guises such as the weaker and narrower “mini-BALs.” How are these diverse outflow features related? Are mini-BALs really just “mini” versions of the BALs, or do they represent a fundamentally different type of outflow, with different degrees of ionization, column densities, mass loss rates, physical origins, etc?

We propose HST-COS spectroscopy to make the first quantitative assessment of the outflow physical conditions across the full range of weak/narrow mini-BALs to strong/broad BALs. Our strategy is to measure key diagnostic lines (SVI, OVI, CIII, SIV, PV, etc.) at 930A – 1130A (rest- frame) in a sample of 7 outflow quasars with known mini-BALs through weak BALs. We will then 1) combine the COS data with ground-based spectra of the same quasars to include more lines (CIV, SiIV) at longer wavelengths, and 2) include in our analysis a nearly identical UV/optical dataset obtained previously for a sample of quasars with strong BALs. Our study of this combined dataset will be an essential next step toward a more global understanding of quasar outflows.

COS/NUV/FUV 11741

Probing Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey for O VI, Ne VIII, Mg X, and Si XII Absorption Systems Currently we can only account for half of the baryons (or less) expected to be found in the nearby universe based on D/H and CMB observations. This “missing baryons problem” is one of the highest-priority challenges in observational extragalatic astronomy. Cosmological simulations suggest that the baryons are hidden in low-density, shock-heated intergalactic gas in the log T = 5 – 7 range, but intensive UV and X-ray surveys using O VI, O VII, and O VIII absorption lines have not yet confirmed this prediction. We propose to use COS to carry out a sensitive survey for Ne VIII and Mg X absorption in the spectra of nine QSOs at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also search for Si XII. This survey will provide more robust constraints on the quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3, and the data will provide rich constraints on the metal enrichment, physical conditions, and nature of a wide variety of QSO absorbers in addition to the warm-hot systems. By comparing the results to other surveys at lower redshifts (with STIS, FUSE, and from the COS GTO programs), the project will also enable the first study of how these absorbers evolve with redshift at z < 1. By combining the program with follow-up galaxy redshift surveys, we will also push the study of galaxy-absorber relationships to higher redshifts, with an emphasis on the distribution of the WHIM with respect to the large-scale matter distribution of the universe. NIC2/WFC3/IR 11548 Infrared Imaging of Protostars in the Orion A Cloud: The Role of Environment in Star Formation We propose NICMOS and WFC3/IR observations of a sample of 252 protostars identified in the Orion A cloud with the Spitzer Space Telescope. These observations will image the scattered light escaping the protostellar envelopes, providing information on the shapes of outflow cavities, the inclinations of the protostars, and the overall morphologies of the envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron spectra of 75 of the protostars. Combining these new data with existing 3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured with the Spitzer Space Telescope, we will determine the physical properties of the protostars such as envelope density, luminosity, infall rate, and outflow cavity opening angle. By examining how these properties vary with stellar density (i.e. clusters vs. groups vs. isolation) and the properties of the surrounding molecular cloud; we can directly measure how the surrounding environment influences protostellar evolution, and consequently, the formation of stars and planetary systems. Ultimately, this data will guide the development of a theory of protostellar evolution. S/C 11639 Catching Accreting WDs Moving into Their Instability Strip(s) Our past HST studies of the temperatures of 9 accreting, pulsating white dwarfs in cataclysmic variables show that 3 are in the normal instability strip for single white dwarfs, but the other 6 are much hotter (15, 000-16, 500K). This dual strip has been proposed to be due to mass differences in the white dwarfs related to evolutionary history and driven by the ionization of different elements in their respective driving regions. In 2007, GW Lib (the brightest and best studied of the 6 hot accreting pulsators) and V455 And (the brightest and best studied of the 3 cool accreting pulsators) underwent rare large amplitude dwarf nova outbursts (known to heat the white dwarf) and their pulsations disappeared. We propose COS observations to: a) take advantage of the unprecedented opportunity to view the change in pulsation modes due to cooling of the white dwarf envelope and b) determine the masses of the white dwarfs to test the dual strip theory. In addition, a nova that had its outburst 22 yrs ago has begun non-radial pulsations as it returns to quiescence. We will use COS to determine its temperature in relation to the instability strip for the pulsating white dwarfs in dwarf novae. STIS/CC 11845 CCD Dark Monitor Part 2 Monitor the darks for the STIS CCD. STIS/CC 11847 CCD Bias Monitor-Part 2 Monitor the bias in the 1×1, 1×2, 2×1, and 2×2 bin settings at gain=1, and 1×1 at gain = 4, to build up high-S/N superbiases and track the evolution of hot columns. WFC3/ACS 11888 ACS Internal Flat Fields The stability of the CCD flat fields will be monitored using the calibration lamps and a sub-sample of the filter set. High signal observations will be used to assess the stability of the pixel-to-pixel flat field structure and to monitor the position of the dust motes. WFC3/IR 11202 The Structure of Early-type Galaxies: 0.1-100 Effective Radii The structure, formation and evolution of early-type galaxies is still largely an open problem in cosmology: how does the Universe evolve from large linear scales dominated by dark matter to the highly non-linear scales of galaxies, where baryons and dark matter both play important, interacting, roles? To understand the complex physical processes involved in their formation scenario, and why they have the tight scaling relations that we observe today (e.g. the Fundamental Plane), it is critically important not only to understand their stellar structure, but also their dark-matter distribution from the smallest to the largest scales. Over the last three years the SLACS collaboration has developed a toolbox to tackle these issues in a unique and encompassing way by combining new non-parametric strong lensing techniques, stellar dynamics, and most recently weak gravitational lensing, with high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic data of early-type lens systems. This allows us to break degeneracies that are inherent to each of these techniques separately and probe the mass structure of early-type galaxies from 0.1 to 100 effective radii. The large dynamic range to which lensing is sensitive allows us both to probe the clumpy substructure of these galaxies, as well as their low-density outer haloes. These methods have convincingly been demonstrated, by our team, using smaller pilot-samples of SLACS lens systems with HST data. In this proposal, we request observing time with WFC3 and NICMOS to observe 53 strong lens systems from SLACS, to obtain complete multi-color imaging for each system. This would bring the total number of SLACS lens systems to 87 with completed HST imaging and effectively doubles the known number of galaxy-scale strong lenses. The deep HST images enable us to fully exploit our new techniques, beat down low-number statistics, and probe the structure and evolution of early- type galaxies, not only with a uniform data-set an order of magnitude larger than what is available now, but also with a fully-coherent and self-consistent methodological approach! WFC3/UVIS 11905 WFC3 UVIS CCD Daily Monitor The behavior of the WFC3 UVIS CCD will be monitored daily with a set of full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K subarray biases are acquired at less frequent intervals throughout the cycle to support subarray science observations. The internals from this proposal, along with those from the anneal procedure (Proposal 11909), will be used to generate the necessary superbias and superdark reference files for the calibration pipeline (CDBS). WFC3/UVIS 11912 UVIS Internal Flats This proposal will be used to assess the stability of the flat field structure for the UVIS detector throughout the 15 months of Cycle 17. The data will be used to generate on-orbit updates for the delta-flat field reference files used in the WFC3 calibration pipeline, if significant changes in the flat structure are seen. WFC3/UVIS/IR 11700 Bright Galaxies at z>7.5 with a WFC3 Pure Parallel Survey

The epoch of reionization represents a special moment in the history of the Universe as it is during this era that the first galaxies and star clusters are formed. Reionization also profoundly affects the environment where subsequent generations of galaxies evolve. Our overarching goal is to test the hypothesis that galaxies are responsible for reionizing neutral hydrogen. To do so we propose to carry out a pure parallel WFC3 survey to constrain the bright end of the redshift z>7.5 galaxy luminosity function on a total area of 176 arcmin^2 of sky. Extrapolating the evolution of the luminosity function from z~6, we expect to detect about 20 Lyman Break Galaxies brighter than M_* at z~8 significantly improving the current sample of only a few galaxies known at these redshifts. Finding significantly fewer objects than predicted on the basis of extrapolation from z=6 would set strong limits to the brightness of M_*, highlighting a fast evolution of the luminosity function with the possible implication that galaxies alone cannot reionize the Universe. Our observations will find the best candidates for spectroscopic confirmation, that is bright z>7.5 objects, which would be missed by small area deeper surveys. The random pointing nature of the program is ideal to beat cosmic variance, especially severe for luminous massive galaxies, which are strongly clustered. In fact our survey geometry of 38 independent fields will constrain the luminosity function like a contiguous single field survey with two times more area at the same depth. Lyman Break Galaxies at z>7.5 down to m_AB=26.85 (5 sigma) in F125W will be selected as F098M dropouts, using three to five orbits visits that include a total of four filters (F606W, F098M, F125W, F160W) optimized to remove low-redshift interlopers and cool stars. Our data will be highly complementary to a deep field search for high- z galaxies aimed at probing the faint end of the luminosity function, allowing us to disentangle the degeneracy between faint end slope and M_* in a Schechter function fit of the luminosity function. We waive proprietary rights for the data. In addition, we commit to release the coordinates and properties of our z>7.5 candidates within one month from the acquisition of each field.

WFC3/UVIS/IR 11702

Search for Very High-z Galaxies with WFC3 Pure Parallel

WFC3 will provide an unprecedented probe to the early universe beyond the current redshift frontier. Here we propose a pure parallel program using this new instrument to search for Lyman-break galaxies at 6.520deg) that last for 4 orbits and longer, resulting a total survey area of about 140~230 square arcminute. Based on our understanding of the new HST parallel observation scheduling process, we believe that the total number of long-duration pure parallel visits in Cycle 17 should be sufficient to accommodate our program. We waive all proprietary rights to our data, and will also make the enhanced data products public in a timely manner.

(1) We will use both the UVIS and the IR channels, and do not need to seek optical data from elsewhere.

(2) Our program will likely triple the size of the probable candidate samples at z~7 and z~8, and will complement other targeted programs aiming at the similar redshift range.

(3) Being a pure parallel program, our survey will only make very limited demand on the scarce HST resources. More importantly, as the pure parallel pointings will be at random sight-lines, our program will be least affected by the bias due to the large scale structure (“cosmic variance”).

(4) We aim at the most luminous LBG population, and will address the bright-end of the luminosity function at z~8 and z~7. We will constrain the value of L* in particular, which is critical for understanding the star formation process and the stellar mass assembly history in the first few hundred million years of the universe.

(5) The candidates from our survey, most of which will be the brightest ones that any surveys would be able to find, will have the best chance to be spectroscopically confirmed at the current 8-10m telescopes.

(6) We will also find a large number of extremely red, old galaxies at intermediate redshifts, and the fine spatial resolution offered by the WFC3 will enable us constrain their formation history based on the study of their morphology, and hence shed light on their connection to the very early galaxies in the universe.

FLIGHT OPERATIONS SUMMARY:

Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.)

HSTARS:

#12224 Negative Acquisition During Coho Support @076/14:57z

HST experienced its first negative acquisition since the switch on DOY 074 to COHO on MAT2. Commanding was sent to reacquire return and forward telemetry, resulting in zero science loss.

COMPLETED OPS REQUEST: (None)

COMPLETED OPS NOTES: (None)


SCHEDULED SUCCESSFUL
FGS GSAcq 7 7
FGS REAcq 9 9
OBAD with Maneuver 7 7

SIGNIFICANT EVENTS: (None)

SpaceRef staff editor.