NASA Hubble Space Telescope Daily Report #4377
Notice: For the foreseeable future, the daily reports may contain apparent discrepancies between some proposal descriptions and the listed instrument usage. This is due to the conversion of previously approved ACS WFC or HRC observations into WFPC2, or NICMOS observations subsequent to the loss of ACS CCD science capability in late January.
HUBBLE SPACE TELESCOPE DAILY REPORT # 4377
– Continuing to collect World Class Science
PERIOD COVERED: UT June 05, 2007 (DOY 156)
OBSERVATIONS SCHEDULED
WFPC2 10800
Kuiper Belt Binaries: Probes of Early Solar System Evolution
Binaries in the Kuiper Belt are a scientific windfall: in them we have relatively fragile test particles which can be used as tracers of the early dynamical evolution of the outer Solar System. We propose to continue a Snapshot program using the ACS/HRC that has a demonstrated discovery potential an order of magnitude higher than the HST observations that have already discovered the majority of known transneptunian binaries. With this continuation we seek to reach the original goals of this project: to accumulate a sufficiently large sample in each of the distinct populations collected in the Kuiper Belt to be able to measure, with statistical significance, how the fraction of binaries varies as a function of their particular dynamical paths into the Kuiper Belt. Today’s Kuiper Belt bears the imprints of the final stages of giant-planet building and migration; binaries may offer some of the best preserved evidence of that long-ago era.
WFPC2 10877
A Snapshot Survey of the Sites of Recent, Nearby Supernovae
During the past few years, robotic {or nearly robotic} searches for supernovae {SNe}, most notably our Lick Observatory Supernova Search {LOSS}, have found hundreds of SNe, many of them in quite nearby galaxies {cz < 4000 km/s}. Most of the objects were discovered before maximum brightness, and have follow-up photometry and spectroscopy; they include some of the best-studied SNe to date. We propose to conduct a snapshot imaging survey of the sites of some of these nearby objects, to obtain late-time photometry that {through the shape of the light and color curves} will help reveal the origin of their lingering energy. The images will also provide high-resolution information on the local environments of SNe that are far superior to what we can procure from the ground. For example, we will obtain color-color and color-magnitude diagrams of stars in these SN sites, to determine the SN progenitor masses and constraints on the reddening. Recovery of the SNe in the new HST images will also allow us to actually pinpoint their progenitor stars in cases where pre- explosion images exist in the HST archive. This proposal is an extension of our successful Cycle 13 snapshot survey with ACS. It is complementary to our Cycle 15 archival proposal, which is a continuation of our long-standing program to use existing HST images to glean information about SN environments.
ACS/SBC 10862
Comprehensive Auroral Imaging of Jupiter and Saturn during the International Heliophysical Year
A comprehensive set of observations of the auroral emissions from Jupiter and Saturn is proposed for the International Heliophysical Year in 2007, a unique period of especially concentrated measurements of space physics phenomena throughout the solar system. We propose to determine the physical relationship of the various auroral processes at Jupiter and Saturn with conditions in the solar wind at each planet. This can be accomplished with campaigns of observations, with a sampling interval not to exceed one day, covering at least one solar rotation. The solar wind plasma density approaching Jupiter will be measured by the New Horizons spacecraft, and a separate campaign near opposition in May 2007 will determine the effect of large-scale variations in the interplanetary magnetic field {IMF} on the Jovian aurora by extrapolation from near-Earth solar wind measurements. A similar Saturn campaign near opposition in Jan. 2007 will combine extrapolated solar wind data with measurements from a wide range of locations within the Saturn magnetosphere by Cassini. In the course of making these observations, it will be possible to fully map the auroral footprints of Io and the other satellites to determine both the local magnetic field geometry and the controlling factors in the electromagnetic interaction of each satellite with the corotating magnetic field and plasma density. Also in the course of making these observations, the auroral emission properties will be compared with the properties of the near-IR ionospheric emissions {from ground-based observations} and non thermal radio emissions, from ground-based observations for Jupiter?s decametric radiation and Cassini plasma wave measurements of the Saturn Kilometric Radiation {SKR}.
NIC1/NIC2/NIC3 8794
NICMOS Post-SAA calibration – CR Persistence Part 5
A new procedure proposed to alleviate the CR-persistence problem of NICMOS. Dark frames will be obtained immediately upon exiting the SAA contour 23, and every time a NICMOS exposure is scheduled within 50 minutes of coming out of the SAA. The darks will be obtained in parallel in all three NICMOS Cameras. The POST-SAA darks will be non- standard reference files available to users with a USEAFTER date/time mark. The keyword ‘USEAFTER=date/time’ will also be added to the header of each POST-SAA DARK frame. The keyword must be populated with the time, in addition to the date, because HST crosses the SAA ~8 times per day so each POST-SAA DARK will need to have the appropriate time specified, for users to identify the ones they need. Both the raw and processed images will be archived as POST-SAA DARKSs. Generally we expect that all NICMOS science/calibration observations started within 50 minutes of leaving an SAA will need such maps to remove the CR persistence from the science images. Each observation will need its own CRMAP, as different SAA passages leave different imprints on the NICMOS detectors.
NIC2 11157
NICMOS Imaging Survey of Dusty Debris Around Nearby Stars Across the Stellar Mass Spectrum
Association of planetary systems with dusty debris disks is now quite secure, and advances in our understanding of planet formation and evolution can be achieved by the identification and characterization of an ensemble of debris disks orbiting a range of central stars with different masses and ages. Imaging debris disks in starlight scattered by dust grains remains technically challenging so that only about a dozen systems have thus far been imaged. A further advance in this field needs an increased number of imaged debris disks. However, the technical challege of such observations, even with the superb combination of HST and NICMOS, requires the best targets. Recent HST imaging investigations of debris disks were sample-limited not limited by the technology used. We performed a search for debris disks from a IRAS/Hipparcos cross correlation which involved an exhaustive background contamination check to weed out false excess stars. Out of ~140 identified debris disks, we selected 22 best targets in terms of dust optical depth and disk angular size. Our target sample represents the best currently available target set in terms of both disk brightness and resolvability. For example, our targets have higher dust optical depth, in general, than newly identified Spitzer disks. Also, our targets cover a wider range of central star ages and masses than previous debris disk surveys. This will help us to investigate planetary system formation and evolution across the stellar mass spectrum. The technical feasibility of this program in two-gyro mode guiding has been proven with on- orbit calibration and science observations during HST cycles 13, 14, and 15.
NIC3 11080
Exploring the Scaling Laws of Star Formation
As a variety of surveys of the local and distant Universe are approaching a full census of galaxy populations, our attention needs to turn towards understanding and quantifying the physical mechanisms that trigger and regulate the large-scale star formation rates {SFRs} in galaxies.
WFPC2 11310
Jupiter’s North Temperate Belt Disturbance
A unique and huge disturbance started at the end of March 2007 in the strongest Jovian atmospheric jet at 24deg N with the eruption of two bright plumes followed by a dark albedo turbulent pattern which fully changed the jet structure and the belt/zone pattern at this latitude. This kind of disturbance is rare in Jupiter, the last one was observed in 1990 but only at low resolution. Up to now we have studied the 2007 event using a battery of ground- based instrumentation {with visible and infrared wavelength coverage}, and after 40 days of development, the two plumes have extinguished whereas the disturbance has fully encircled the planet, forming a new dark belt. We have HST WFPC2 high resolution images of the belt/jet structure at 24deg N before the eruption. Those images were taken in January and February 2007 to support the New Horizons flyby, and now we require new observations of the new belt and jet following the disturbance, to compare both stages and determine its action on the jet wind profile and belt/zone cloud vertical structure. This comparison will provide for the first time valuable information on the maintenance, variability and origin of Jupiter jets and cloud banding.
FLIGHT OPERATIONS SUMMARY:
Significant Spacecraft Anomalies: (The following are preliminary reports of potential non-nominal performance that will be investigated.) HSTARS:
10850 – OBAD Failed Identification
At AOS 157/07:16:31 OBAD ID & TxG FHST Sanity Check Failed. OBAD2 & GSAcq were successful. OBAD MAP errors: V1 -2.92, V2 -8.85, V3 -0.41, RSS 9.33. COMPLETED OPS REQUEST: (None)
COMPLETED OPS NOTES: (None)
SCHEDULED SUCCESSFUL FGS GSacq 09 09 FGS REacq 03 03 OBAD with Maneuver 24 23
SIGNIFICANT EVENTS: (None)