Status Report

Methane Production by Methanogens Following an Aerobic Washing Procedure: Simplifying Methods for Manipulation

By SpaceRef Editor
December 12, 2006
Filed under , , ,
Methane Production by Methanogens Following an Aerobic Washing Procedure: Simplifying Methods for Manipulation
http://images.spaceref.com/news/mars.2.jpg

Dec 2006, Vol. 6, No. 6 : 819 -823

Full paper

The recent discovery of methane in the martian atmosphere is arguably one of the most important discoveries in the field of astrobiology. One possible source of this methane could be a microorganism analogous to those on Earth in the domain Archaea known as methanogens. Methanogens are described as obligately anaerobic, and methods developed to work with methanogens typically include anaerobic media and buffers, gassing manifolds, and possibly anaerobic chambers.

To determine if the time, effort, and supplies required to maintain anaerobic conditions are necessary to maintain viability, we compared anaerobically washed cells with cells that were washed in the presence of atmospheric oxygen. Anaerobic tubes were opened, and cultures were poured into plastic centrifuge tubes, centrifuged, and suspended in fresh buffer, all in the presence of atmospheric oxygen. Washed cells from both aerobic and anaerobic procedures were inoculated into methanogenic growth media under anaerobic conditions and incubated at temperatures conducive to growth for each methanogenic strain tested. Methane production was measured at time intervals using a gas chromatograph. In three strains, significant differences were not seen between aerobically and anaerobically washed cells. In one strain, there was significantly less methane production observed following aerobic washing at some time points; however, substantial methane production occurred following both procedures.

Thus, it appears that aerobic manipulations for relatively short periods of time with at least a few species of methanogens may not lead to loss of viability. With the discovery of methane in the martian atmosphere, it is likely that there will be an increase in astrobiology-related methanogen research. The research reported here should simplify the methodology.

About Astrobiology and The Astrobiology Web

Astrobiology is the leading peer-reviewed journal in its field. To promote this developing field, the Journal has teamed up with The Astrobiology Web to highlight one outstanding paper per issue of Astrobiology. This paper is available free online at www.liebertpub.com/ast and to visitors of The Astrobiology Web at www.astrobiology.com.

Astrobiology is published quarterly in print and online. The journal provides a forum for scientists seeking to advance our understanding of life?s origins, evolution, distribution and destiny in the universe. A complete table of contents and a full text for this issue may be viewed online at www.liebertpub.com/ast.

Mary Ann Liebert, Inc., is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research. Its biotechnology trade magazine, Genetic Engineering News (GEN), was the first in its field and is today the industry?s most widely read publication worldwide. A complete list of the firm?s 60 journals, books, and newsmagazines is available at www.liebertpub.com

Mary Ann Liebert, Inc. – 140 Huguenot St., New Rochelle, NY 10801-5215 – www.liebertpub.com – Phone: (914) 740-2100 – (800) M-LIEBERT – Fax: (914) 740-2101

SpaceRef staff editor.