Status Report

Arabidopsis thaliana in Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Mars Missions and Terraforming

By SpaceRef Editor
December 12, 2006
Filed under , , ,
Arabidopsis thaliana in Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Mars Missions and Terraforming
http://images.spaceref.com/news/2002/06.02.02.habitat.lrg.mod.jpg

Full paper title (as published): “Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars”

Dec 2006, Vol. 6, No. 6 : 851 -866

Full paper

Understanding how hypobaria can affect net photosynthetic (P net) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies.

Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO2 levels were allowed to drawdown from 0.1 kPa to CO2 compensation points to assess P net rates under different hypobaric conditions. Results showed that P net increased as the pressures decreased from 101 to 10 kPa when CO2 partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO2 was in the nonlimiting range from 0.10 to 0.07 kPa, the P net rates were insensitive to decreasing pressures.

Thus, if CO2 concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P net rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

About Astrobiology and The Astrobiology Web

Astrobiology is the leading peer-reviewed journal in its field. To promote this developing field, the Journal has teamed up with The Astrobiology Web to highlight one outstanding paper per issue of Astrobiology. This paper is available free online at www.liebertpub.com/ast and to visitors of The Astrobiology Web at www.astrobiology.com.

Astrobiology is published quarterly in print and online. The journal provides a forum for scientists seeking to advance our understanding of life?s origins, evolution, distribution and destiny in the universe. A complete table of contents and a full text for this issue may be viewed online at www.liebertpub.com/ast.

Mary Ann Liebert, Inc., is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research. Its biotechnology trade magazine, Genetic Engineering News (GEN), was the first in its field and is today the industry?s most widely read publication worldwide. A complete list of the firm?s 60 journals, books, and newsmagazines is available at www.liebertpub.com

Mary Ann Liebert, Inc. – 140 Huguenot St., New Rochelle, NY 10801-5215 – www.liebertpub.com – Phone: (914) 740-2100 – (800) M-LIEBERT – Fax: (914) 740-2101

SpaceRef staff editor.