EnVision: Understanding Why Our Most Earth-like Neighbour Is So Different

©ESA/NASA

EnVision

This document is the EnVision Venus orbiter proposal, submitted in October 2016 in response to ESA's M5 call for Medium-size missions for its Science Programme, for launch in 2029.

Why are the terrestrial planets so different? Venus should be the most Earth-like of all our planetary neighbours: its size, bulk composition and distance from the Sun are very similar to those of Earth. Its original atmosphere was probably similar to that of early Earth, with abundant water that would have been liquid under the young sun's fainter output. Even today, with its global cloud cover, the surface of Venus receives less solar energy than does Earth, so why did a moderate climate ensue here but a catastrophic runaway greenhouse on Venus? How and why did it all go wrong for Venus? What lessons can be learned about the life story of terrestrial planets in general, in this era of discovery of Earth-like exoplanets? Were the radically different evolutionary paths of Earth and Venus driven solely by distance from the Sun, or do internal dynamics, geological activity, volcanic outgassing and weathering also play an important part?

Following the primarily atmospheric focus of Venus Express, we propose a new Venus orbiter named EnVision, to focus on Venus' geology and geochemical cycles, seeking evidence for present and past activity. The payload comprises a state-of-the-art S-band radar which will be able to return imagery at spatial resolutions of 1 - 30 m, and capable of measuring cm-scale deformation; this is complemented by subsurface radar, IR and UV spectrometers to map volcanic gases, and by geodetic investigations.

Richard Ghail, Colin Wilson, Thomas Widemann, Lorenzo Bruzzone, Caroline Dumoulin, Jörn Helbert, Robbie Herrick, Emmanuel Marcq, Philippa Mason, Pascal Rosenblatt, Ann Carine Vandaele, Louis-Jerome Burtz
(Submitted on 27 Mar 2017)

Comments: ES M5 mission proposal
Subjects: Earth and Planetary Astrophysics (astro-ph.EP)
Cite as: arXiv:1703.09010 [astro-ph.EP] (or arXiv:1703.09010v1 [astro-ph.EP] for this version)
Submission history
From: Colin Wilson
[v1] Mon, 27 Mar 2017 11:10:25 GMT (5855kb)
https://arxiv.org/abs/1703.09010

Please follow SpaceRef on Twitter and Like us on Facebook.