Leveraging Citizen Science and Machine Learning to Detect Interstellar Bubbles

©IAC

Interstellar Bubble

We present Brut, an algorithm to identify bubbles in infrared images of the Galactic midplane. Brut is based on the Random Forest algorithm, and uses bubbles identified by >35,000 citizen scientists from the Milky Way Project to discover the identifying characteristics of bubbles in images from the Spitzer Space Telescope.

We demonstrate that Brut's ability to identify bubbles is comparable to expert astronomers. We use Brut to re-assess the bubbles in the Milky Way Project catalog, and find that 10-30% of the objects in this catalog are non-bubble interlopers. Relative to these interlopers, high-reliability bubbles are more confined to the mid plane, and display a stronger excess of Young Stellar Objects along and within bubble rims. Furthermore, Brut is able to discover bubbles missed by previous searches -- particularly bubbles near bright sources which have low contrast relative to their surroundings. Brut demonstrates the synergies that exist between citizen scientists, professional scientists, and machine learning techniques.

In cases where "untrained" citizens can identify patterns that machines cannot detect without training, machine learning algorithms like Brut can use the output of citizen science projects as input training sets, offering tremendous opportunities to speed the pace of scientific discovery. A hybrid model of machine learning combined with crowdsourced training data from citizen scientists can not only classify large quantities of data, but also address the weakness of each approach if deployed alone.

Christopher Beaumont, Alyssa Goodman, Jonathan Williams, Sarah Kendrew, Robert Simpson (Submitted on 10 Jun 2014)

Comments: 26 pages, 22 figures, ApJS in press. Code available at this https URL . Replication data available at this http URL

Subjects: Astrophysics of Galaxies (astro-ph.GA); Instrumentation and Methods for Astrophysics (astro-ph.IM)

Cite as: arXiv:1406.2692 [astro-ph.GA] (or arXiv:1406.2692v1 [astro-ph.GA] for this version)

Submission history From: Chris Beaumont [v1] Tue, 10 Jun 2014 20:00:10 GMT (5726kb)

Please follow SpaceRef on Twitter and Like us on Facebook.