Variable Winds on Hot Giant Exoplanet Help Study of Magnetic Field

©PSI

HAT-P-7b

Senior Scientist Tamara M. Rogers of the Planetary Science Institute has discovered that substantial variability in the winds on the hot giant exoplanet HAT-P-7b are due to magnetism, and used those measurements to develop a new method to constrain the magnetic field of such an object.

HAT-P-7b was discovered by NASA's Kepler Mission in 2008. It is nearly 40 percent larger and nearly 80 percent more massive than Jupiter. It orbits its star every couple of days, and is so close that dayside temperature may be 2,200 degrees Kelvin (3,500 degrees Fahrenheit) with a night side 1,000 Kelvin (1,340 degrees Fahrenheit) cooler.

This strong day-night temperature difference drives strong eastward winds in the atmosphere and shifts the hottest temperature away from the point directly beneath the star on the dayside. However, this hot spot shifts significantly over time - even ending up on the west side of the sub-stellar point. This means that the winds are also changing significantly.

"The extreme temperatures of HAT-P-7b ionizes alkali metals such as lithium, sodium, and potassium, which results in the coupling of the atmosphere to a deep-seated magnetic field. Magnetic forces are able to then disrupt the strong eastward winds, leading to variable and even oppositely directed winds," Rogers said.

Rogers used a hydrodynamic model of the atmosphere in combination with a magnetohydrodynamic (MHD) model to reproduce the observed variations in the hot spot location, thereby setting a minimum value for the strength of the magnetic field of this planet at six times that of the Earth.

"Long timeline or multiple epoch observations of hot giant exoplanet phase curves coupled with MHD models of the atmospheres of these planets, can be used to place constraints on the magnetic field strengths of other hot giant exoplanets," Rogers said. "This will provide new insights into dynamo theory, planetary evolution and interpretations of star-planet magnetic interactions."

Rogers' paper "Constraints on the magnetic field strengths of HAT-P-b and other hot giant exoplanets" appears in Nature Astronomy.

This work was funded by an award to the Planetary Science Institute from the NASA Astrophysics Theory Program.

THE PLANETARY SCIENCE INSTITUTE:

The Planetary Science Institute is a private, nonprofit 501(c)(3) corporation dedicated to solar system exploration. It is headquartered in Tucson, Arizona, where it was founded in 1972.

PSI scientists are involved in numerous NASA and international missions, the study of Mars and other planets, the Moon, asteroids, comets, interplanetary dust, impact physics, the origin of the solar system, extra-solar planet formation, dynamics, the rise of life, and other areas of research. They conduct fieldwork on all continents around the world. They also are actively involved in science education and public outreach through school programs, children's books, popular science books and art.

PSI scientists are based in 23 states and the District of Columbia, and work from various locations around the world.

Please follow SpaceRef on Twitter and Like us on Facebook.