Recently in the Supernovas Category


Using NASA's Hubble Space Telescope, astronomers have discovered a companion star to a rare type of supernova.

The Eta Carinae star system does not lack for superlatives. Not only does it contain one of the biggest and brightest stars in our galaxy, weighing at least 90 times the mass of the Sun, it is also extremely volatile and is expected to have at least one supernova explosion in the future.

Supernova Seen In Two Lights

The destructive results of a mighty supernova explosion reveal themselves in a delicate blend of infrared and X-ray light, as seen in this image from NASA's Spitzer Space Telescope and Chandra X-Ray Observatory, and the European Space Agency's XMM-Newton.

Supernova SN 2014J Explodes

New data from NASA's Chandra X-ray Observatory has provided stringent constraints on the environment around one of the closest supernovas discovered in decades.

At a distance of about 20,000 light years, G292.0+1.8 is one of only three supernova remnants in the Milky Way known to contain large amounts of oxygen.

In the middle of the 19th century, the massive binary system Eta Carinae underwent an eruption that ejected at least 10 times the sun's mass and made it the second-brightest star in the sky. Now, a team of astronomers has used extensive new observations to create the first high-resolution 3-D model of the expanding cloud produced by this outburst.

This bright spiral galaxy is known as NGC 2441, located in the northern constellation of Camelopardalis (The Giraffe). However, NGC 2441 is not the only subject of this new Hubble image; the galaxy contains an intriguing supernova named SN1995E, visible as a small dot at the approximate center of this image.

Distant exploding stars observed by NASA's Hubble Space Telescope are providing astronomers with a powerful tool to determine the strength of naturally-occurring "cosmic lenses" that are used to magnify objects in the remote universe.

A Hardy Star Survives Supernova Blast

When a massive star runs out fuel, it collapses and explodes as a supernova. Although these explosions are extremely powerful, it is possible for a companion star to endure the blast.

New View of Supernova Death Throes

A powerful, new three-dimensional model provides fresh insight into the turbulent death throes of supernovas, whose final explosions outshine entire galaxies and populate the universe with elements that make life on Earth possible.

This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82.

A bright supernova discovered only six weeks ago in a nearby galaxy is provoking new questions about the exploding stars that scientists use as their main yardstick for measuring the universe.

One of the biggest mysteries in astronomy, how stars blow up in supernova explosions, finally is being unraveled with the help of NASA's Nuclear Spectroscopic Telescope Array (NuSTAR).

An exceptionally close stellar explosion discovered on Jan. 21 has become the focus of observatories around and above the globe, including several NASA spacecraft.

Data from NASA's Chandra X-ray Observatory has revealed faint remnants of a supernova explosion and helped researchers determine Circinus X-1 -- an X-ray binary -- is the youngest of this class of astronomical objects found to date.

When a star explodes as a supernova, it shines brightly for a few weeks or months before fading away. Yet the material blasted outward from the explosion still glows hundreds or thousands of years later, forming a picturesque supernova remnant. What powers such long-lived brilliance?

One of the most famous objects in the sky - the Cassiopeia A supernova remnant - will be on display like never before, thanks to NASA's Chandra X-ray Observatory and a new project from the Smithsonian Institution.

3C 397 (also known as G41.1-0.3) is a Galactic supernova remnant with an unusual shape. Researchers think its box-like appearance is produced as the heated remains of the exploded star -- detected by Chandra in X-rays (purple) -- runs into cooler gas surrounding it.

A team of researchers including Carnegie's Mansi Kasliwal and John Mulchaey used a novel astronomical survey software system -- the intermediate Palomar Transient Factory (iPTF) -- to link a new stripped-envelope supernova, named iPTF13bvn, to the star from which it exploded.

The Remains of a Supernova

Astronomers estimate that a star explodes as a supernova in our Galaxy, on average, about twice per century. In 2008, a team of scientists announced they discovered the remains of a supernova that is the most recent, in Earth's time frame, known to have occurred in the Milky Way.

Unusual Supernova Perfectly Normal

August, 2011, saw the dazzling appearance of the closest and brightest Type Ia supernova since Type Ia's were established as "standard candles" for measuring the expansion of the universe.

Astronomers have discovered light echoing off material surrounding a recent supernova explosion, SN 2009ig. The dust and gas that are reflecting the light are so close to the eruption center that it is likely related to the progenitor star. This discovery supports the theory that exploding white dwarfs become unstable from matter donated by large, non-degenerate stars.

Supernova Remnant SNR 0519

These delicate wisps of gas make up an object known as SNR B0519-69.0, or SNR 0519 for short. The thin, blood-red shells are actually the remnants from when an unstable progenitor star exploded violently as a supernova around 600 years ago.

This year, astronomers around the world have been celebrating the 50th anniversary of X-ray astronomy. Few objects better illustrate the progress of the field in the past half-century than the supernova remnant known as SN 1006.

The Farthest Supernova

NASA's Hubble Space Telescope has found the farthest supernova so far of the type used to measure cosmic distances. Supernova UDS10Wil, nicknamed SN Wilson after American President Woodrow Wilson, exploded more than 10 billion years ago.

A New Kind of Supernova

Until now, supernovas came in two main "flavors." A core-collapse supernova is the explosion of a star about 10 to 100 times as massive as our Sun, while a Type Ia supernova is the complete disruption of a tiny white dwarf. Today, astronomers are reporting their discovery of a new kind of supernova called Type Iax. This new class is fainter and less energetic than Type Ia. Although both varieties come from exploding white dwarfs, Type Iax supernovas may not completely destroy the white dwarf.

Supernova Remnant W49B

The highly distorted supernova remnant shown in this image may contain the most recent black hole formed in the Milky Way galaxy. The image combines X-rays from NASA's Chandra X-ray Observatory in blue and green, radio data from the NSF's Very Large Array in pink, and infrared data from Caltech's Palomar Observatory in yellow.

Stellar Effervescence on Display

This composite image shows the superbubble DEM L50 (a.k.a. N186) located in the Large Magellanic Cloud about 160,000 light-years from Earth.

Neon Lights Up Exploding Stars

An international team of nuclear astrophysicists has shed new light on the explosive stellar events known as novae.

A new study published by University of Chicago researchers challenges the notion that the force of an exploding star forced the formation of the solar system.

The first direct detection of radioactive titanium associated with supernova remnant 1987A has been made by ESA's Integral space observatory. The radioactive decay has likely been powering the glowing remnant around the exploded star for the last 20 years.

Cause of Supernova SN 1006 Revealed

Between 30 April and 1 May of the year 1006 the brightest stellar event ever recorded in history occurred: a supernova, or stellar explosion, that was widely observed by various civilizations from different places on the Earth.

Was Kepler's Supernova Unusually Powerful?

In 1604, a new star appeared in the night sky that was much brighter than Jupiter and dimmed over several weeks. This event was witnessed by sky watchers including the famous astronomer Johannes Kepler.

Over fifty years ago, a supernova was discovered in M83, a spiral galaxy about 15 million light-years from Earth. Astronomers have used NASA's Chandra X-ray Observatory to make the first detection of X-rays emitted by the debris from this explosion.

A Supernova Cocoon Breakthrough

Observations with NASA's Chandra X-ray Observatory have provided the first X-ray evidence of a supernova shock wave breaking through a cocoon of gas surrounding the star that exploded. This discovery may help astronomers understand why some supernovas are much more powerful than others.